
 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

The Asserted Versioning Glossary 
This Glossary contains approximately three-hundred definitions, nearly all of which are 
specific to Asserted Versioning. Most expressions have both a Mechanics entry and a 
Semantics entry. A Mechanics entry describes how the defined concept is implemented in 
the "machinery" of Asserted Versioning. A Semantics entry describes what that concept 
means. We can also think of a Mechanics entry as telling us what a component of 
Asserted Versioning is or what it does, and a Semantics entry as telling us why it is 
important. 
 
In linguistics, the usual contrast to semantics is syntax. But syntax is only the "parts list" 
of Asserted Versioning. The Asserted Versioning Framework, or any other 
implementation of Asserted Versioning, has an intricately interconnected set of parts, 
which correspond to the syntax of a language. But when it is turned on, it is a software 
engine which translates metadata and data models into the database schemas it uses to do 
its work, transforms the data instances it manages from one state to another state, 
augments or diminishes the totality of the representation of the objects its data 
corresponds to, and facilitates the ultimate purpose of this wealth of activity, which is to 
provide meaningful information about the time-varying state of the world an enterprise is 
a part of and needs to remain cognizant of.  
  

Grammar 
Grammatical variations of the same glossary term will not usually be distinguished. Thus 
both “version” and “versions” are in this book, but only the former is a Glossary entry. 
"Currently asserted" is listed as a component of one or more definitions, but the 
corresponding Glossary entry is "current assertion". 
 

Dates and Times 
All references to points in time in this Glossary, unless otherwise noted, refer to them 
using the word "date". This is done for the same reason that all examples of points in time 
in the text, unless otherwise noted, are dates. This reason is simply convenience. Periods 
of time in either of the two bi-temporal dimensions are delimited by their starting point in 
time and ending point in time. These points in time may be timestamps, dates, or any 
other point in time recognizable by the DBMS. As defined in this Glossary, they are 
clock ticks. 
 

Components 
Components of a definition are other Glossary entries used in the definition. Listing the 
components of every definition separately makes it easier to pick them out and follow 
cross-reference trails. 
 
The Components section of these definitions are also working notes towards a formal 
ontology of temporal data. If we assume first-order predicate logic as an initial 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

formalization, we can think of the components of a Glossary definition, together with a 
set of primitive (formally undefined) terms, as the predicates with which the Mechanics 
and Semantics sections of those definitions can be expressed as statements in first-order 
predicate logic.  
 
Thus formalized, automated inferencing and theorem proving mechanisms can then be 
used to discover new theorems. And the point of that activity, of course, is that it can 
make us aware of the deductive implications of things we already know, of statements we 
already recognize as true statements. These deductive implications are other true 
statements. But until we are aware of them, they are not part of our knowledge about the 
world. These mechanisms can also be used to prove or disprove conjectures about 
temporal data, thus adding some of them to the totality of that knowledge, and adding, for 
the rest of them, the knowledge that they are wrong. 
 
Of particular note are those few Glossary entries whose list of components is empty 
(indicated by "N/A"). In an ontology, the collection of undefined terms is called a 
controlled vocabulary, and these Glossary entries with empty component lists are part of 
the controlled vocabulary for a formal ontology of Asserted Versioning. 
 

Non-Standard Glossary Definitions 
Broadly speaking, the semantics entry of a Glossary definition describes a concept, while 
the mechanics entry describes its implementation. However, in some cases, there doesn't 
seem to be a need for both kinds of entry, and so those definitions will have just a 
mechanics section, or just a semantics section. And in other cases, it seems more 
appropriate to provide a general description rather than to attempt a precise definition. 
 
But the heart of this Glossary are the definitions which have both a semantics and a 
mechanics section. Together, the collection of their semantics entries is a summary 
statement of Asserted Versioning as a theory of bi-temporal data management, while the 
collection of their mechanics entries is a summary statement of the implementation of the 
theory in Asserted Versioning practice. 
 

Allen Relationships 
The original Allen relationships are leaf nodes in our Allen relationship taxonomy. Most 
of the Allen relationships, as well as our taxonomic groupings which are OR'd collections 
of those relationships, have an inverse. The inverse of an Allen relationship or 
relationship group, between two time periods which do not both begin and end on the 
same clock tick, is the relationship in which the two time periods are reversed. Following 
Allen's original notation, we use a superscript suffix (x -1) to denote the inverse 
relationship. Inverse relationships exist in all cases where one of the two time periods is 
shorter than the other and/or begins on an earlier clock tick than the other. Consequently, 
all the Allen relationship except [equals], have an inverse. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

"Trivial" Definitions 
Some Glossary definitions may appear to be "trivial", in the sense that we can reliably 
infer what those expressions mean from the expressions themselves. For example, "end 
date" is defined as "an assertion end date or an effective end date". 
 
Definitions like these exist because these expressions are used in the definitions of other 
expressions. So they are a kind of shorthand. But in addition, our ultimate objective, with 
this Glossary, is to formalize it as an ontology expressed in predicate logic. For that 
purpose, apparently trivial entries such as "end date" are needed as predicates formal 
definitions of, for example, the expression "assertion end date".  
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Glossary Entries 
 

include 
 See Allen relationship [fills-1]. 
 

"assert" cognates 
Mechanics: the cognate terms "accept", "agree", "assent", "believe", "claim", "know", 

"say" and "think". 
 
Semantics: terms which, for purposes of the discussions in this book, may be taken as 

synonymous with "assert" as that word is defined in this book. 
 
Comments: 

• There are important differences among these terms, in the fields of epistemology 
and semantics. For example, some designate what philosophers call "speech acts", 
while others designate what philosophers call "propositional attitudes". 

 

12/31/9999 
Mechanics: the latest date which can be represented by the SQL Server DBMS. 
 
Semantics: a value for an end date which means that the end of the time period it delimits 

is unknown but assumed to be later than Now(). 
 
Comments:  

• For other DBMSs, the value used should similarly be the latest date which can be 
represented by that DBMS.  

 
Components: end date, Now(), time period. 
 

9999 
Mechanics: a DBMS-agnostic representation of the latest date which can be represented 

by a specific DBMS. 
 
Semantics: a DBMS-agnostic representation of a value for an end date which means that 

the end of the time period it delimits is unknown but assumed to be later than 
Now(). 

 
Components: end date, Now(), time period. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

actionable 
Description: data which is good enough for its intended purposes. 
 
Comments:  

• As a kind of shorthand, we say that the assertion time period of a row is the period 
of time during which we assert that it is true. And if we discover that a row is 
incorrect, and does not make a true statement, we do end its assertion time period. 

• But some true statements are not actionable. For example, a currently effective 
row in a one-hundred column table may have ten of its columns filled with 
accurate data, and the other ninety columns empty. So that row makes a true 
statement "as far as it goes", but because it is so incomplete, it is probably not a 
statement that provides enough information to act on. 

• And some actionable statements are not even true. Financial forecasts, for 
example, may be actionable. But because they are about the future, what they 
describe hasn't happened yet, and so they are statements which are neither true 
nor false.1 

 
Components: currently asserted. 
 

ad hoc query 
Description: a query which is not embedded in an application program, and which is not 

run as part of the IT production schedule. 
 
Comments: 

• These queries are usually written by business researchers and analysts, and are 
often run only a few times before they are discarded. Thus the cost of writing 
them is amortized over only a few occasions on which they are used, and so it is 
important to keep the query-writing costs as low as possible. This is why we 
recommend that, as far as possible, ad hoc queries should be written against 
views. 

• See also: production query. 
 

Allen relationship taxonomy 
Description: a taxonomy of Allen relationships, developed by the authors and presented 

in Chapter 3. 
 
Comments: 

• Our Mechanics definitions of the Allen relationships will express time periods as 
date pairs, using the closed-open convention. The two time periods will be 
designated P1 and P2, and the begin and end dates, respectively, eff_beg_dt1 and 
eff_end_dt1, and eff_beg_dt2 and eff_end_dt2.  

                                                 
1  This, at least, is the standard interpretation of Aristotle's position on what are called "future 

contingents", as expressed in his work De Interpretatione. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

• These definitions assume that the begin date value for a time period is less than 
the end date value for that time period. This assumption excludes non-sensical 
time periods that end before they begin. It also excludes empty time periods. 

• Our Semantics definitions of the Allen relationships will be stated in terms of 
clock ticks contained or not contained in time periods, and so these definitions are 
independent of the convention chosen for using pairs of dates to delimit time 
periods. In particular, "begin", "end", "earlier", "later" and other terms refer to 
relationships in time, not to comparisons of begin and/or end dates to other begin 
and/or end dates. 

• Boolean operators (AND, OR, NOT) are capitalized. 
 

Allen relationship, [aligns ] 
Mechanics: P1 and P2 [align] if and only if  

((eff_beg_dt1 = eff_beg_dt2) AND (eff_end_dt1 < eff_end_dt2)) 
OR ((eff_beg_dt1 > eff_beg_dt2) AND (eff_end_dt1 = eff_end_dt2)) 
AND NOT((eff_beg_dt1 = eff_beg_dt2) AND (eff_end_dt1 = eff_end_dt2)).  

 
Semantics: P1 and P2 [align] if and only if they either start or end on the same clock tick, 

but not both.  
 

Allen relationship, [before] 
Mechanics: P1 is [before] P2 if and only if (eff_end_dt1 < eff_beg_dt2). 
 
Semantics: P1 is [before] P2 if and only if the next clock tick after P1 is earlier than the 

first clock tick in P2. 
 

Allen relationship, [before -1] 
Mechanics: P1 is [before-1] P2 if and only if (eff_beg_dt1 > eff_end_dt2). 
 
Semantics: P1 is [before-1] P2 if and only if the first clock tick in P1 is later than the next 

clock tick after P2. 
 

Allen relationship, [during] 
Mechanics: P1 is [during] P2 if and only if (eff_beg_dt1 > eff_beg_dt2) AND 

(eff_end_dt1 < eff_end_dt2). 
 
Semantics: P1 is [during] P2 if and only if the first clock tick in P1 is later than the first 

clock tick P2, and the last clock tick in P1 is earlier than the last clock tick in P2. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Allen relationship, [during -1] 
Mechanics: P1 is [during-1] P2 if and only if (eff_beg_dt1 < eff_beg_dt2) AND 

(eff_end_dt1 > eff_end_dt2). 
 
Semantics: P1 is [during-1] P2 if and only if the first clock tick in P1 is earlier than the first 

clock tick in P2, and the last clock tick in P1 is later than the last clock tick in P2. 
 

Allen relationship, [ equals] 
Mechanics: P1 [equals] P2 if and only if (eff_beg_dt1 = eff_beg_dt2) AND 

(eff_end_dt1 = eff_end_dt2). 
 
Semantics: P1 [equals] P2 if and only if they both start and end on the same clock tick. 
 

Allen relationship, [excludes ] 
Mechanics: P1 [excludes] P2 if and only if (eff_end_dt1 <= eff_beg_dt2).  
 
Semantics: P1 [excludes] P2 if and only if the next clock tick after P1 is no later than the 

first clock tick in P2.  
 

Allen relationship, [excludes -1] 
Mechanics: P1 [excludes-1] P2 if and only if (eff_beg_dt1 >= eff_end_dt2). 
 
Semantics: P1 [excludes-1] P2 if and only if the first clock tick in P1 is no earlier than the 

next clock tick after P2.  
 

Allen relationship, [fills ] 
Mechanics: P1 [fills ] P2 if and only if (eff_beg_dt1 >= eff_beg_dt2) AND 

(eff_end_dt1 <= eff_end_dt2).  
 
Semantics: P1 [fills ] P2 if and only if the first clock tick in P1 is no earlier than the first 

clock tick in P2, and the last clock tick in P1 is no later than the last clock tick in 
P2.  

 

Allen relationship, [fills -1] 
Mechanics: P1 [fills ] P2 if and only if (eff_beg_dt1 <= eff_beg_dt2) AND 

(eff_end_dt1 >= eff_end_dt2).  
 
Semantics: P1 [fills ] P2 if and only if the first clock tick in P1 is no later than the first 

clock tick in P2, and the last clock tick in P1 is no earlier than the last clock tick in 
P2.  



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Allen relationship, [finishes] 
Mechanics: P1 [finishes] P2 if and only if (eff_beg_dt1 > eff_beg_dt2) AND 

(eff_end_dt1 = eff_end_dt2). 
 
Semantics: P1 [finishes] P2 if and only if the first clock tick in P1 is later than the first 

clock tick in P2, and the two time periods end on the same clock tick. 
 

Allen relationship, [finishes -1] 
Mechanics: P1 [finishes-1] P2 if and only if (eff_beg_dt1 < eff_beg_dt2) AND 

(eff_end_dt1 = eff_end_dt2). 
 
Semantics: P1 [finishes-1] P2 if and only if the first clock tick in P1 is earlier than the first 

clock tick in P2, and the two time periods end on the same clock tick. 
 

Allen relationship, [intersects ] 
Mechanics: P1 [intersects] P2 if and only if (eff_beg_dt1 <= eff_beg_dt2) AND 

(eff_end_dt1 > eff_beg_dt2). 
 
Semantics: P1 [intersects] P2 if and only if the first clock tick in P1 is no later than the first 

clock tick in P2, and the next clock tick after P1 is later than the first clock tick in 
P2.  

 

Allen relationship, [intersects -1] 
Mechanics: P1 [intersects-1] P2 if and only if (eff_beg_dt1 >= eff_beg_dt2) AND 

(eff_beg_dt1 < eff_end_dt2). 
 
Semantics: P1 [intersects-1] P2 if and only if the first clock tick in P1 is no earlier than the 

first clock tick in P2, and the first clock tick in P1 is earlier than the next clock tick 
after P2. 

 

Allen relationship, [meets] 
Mechanics: P1 [meets] P2 if and only if (eff_end_dt1 = eff_beg_dt2). 
 
Semantics: P1 [meets] P2 if and only if the next clock tick after P1 is the same as the first 

clock tick in P2.  
 

Allen relationship, [meets -1] 
Mechanics: P1 [meets-1] P2 if and only if (eff_beg_dt1 = eff_end_dt2).  
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Semantics: P1 [meets-1] P2 if and only if the first clock tick in P1 is the same as the next 
clock tick after P2.  

 

Allen relationship, [occupies ] 
Mechanics: P1 [occupies] P2 if and only if  

((eff_beg_dt1 >= eff_beg_dt2) AND (eff_end_dt1 <= eff_end_dt2)) AND  
NOT((eff_beg_dt1 = eff_beg_dt2) AND (eff_end_dt1 = eff_end_dt2)). 

 
Semantics: P1 [occupies] P2 if and only if the first clock tick in P1 is no earlier than the 

first clock tick in P2, and the last clock tick in P1 is no later than the last clock tick 
in P2, and P1 and P2 do not both begin and end on the same clock tick. 

 

Allen relationship, [occupies -1] 
Mechanics: P1 [occupies-1] P2 if and only if  

((eff_beg_dt1 <= eff_beg_dt2) AND (eff_end_dt1 >= eff_end_dt2)) AND 
NOT((eff_beg_dt1 = eff_beg_dt2) AND (eff_end_dt1 = eff_end_dt2)). 

 
Semantics: P1 [occupies-1] P2 if and only if the first clock tick in P1 is no later than the 

first clock tick in P2, and the last clock tick in P1 is no earlier than the last clock 
tick in P2, and P1 and P2 do not both begin and end on the same clock tick.  

 

Allen relationship, [overlaps] 
Mechanics: P1 [overlaps] P2 if and only if  

(eff_beg_dt1 < eff_beg_dt2) AND  
(eff_end_dt1 > eff_beg_dt2) AND  
(eff_end_dt1 < eff_end_dt2). 

 
Semantics: P1 [overlaps] P2 if and only if the first clock tick in P1 is earlier than the first 

clock tick in P2, and the next clock tick after P1 is later than the first clock tick in 
P2, and the last clock tick in P1 is earlier than the last clock tick in P2. 

 

Allen relationship, [overlaps -1] 
Mechanics: P1 [overlaps] P2 if and only if  

(eff_beg_dt1 > eff_beg_dt2) AND 
(eff_beg_dt1 < eff_end_dt2) AND 
(eff_end_dt1 > eff_end_dt2). 

 
Semantics: P1 [overlaps-1] P2 if and only if the first clock tick in P1 is later than the first 

clock tick in P2, and the first clock tick in P1 is earlier than the next clock tick 
after the end of P2, and the last clock tick in P1 is later than the last clock tick in 
P2. 

 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Allen relationship, [starts] 
Mechanics: P1 [starts] P2 if and only if (eff_beg_dt1 = eff_beg_dt2) AND 

(eff_end_dt1 < eff_end_dt2). 
 
Semantics: P1 [starts] P2 if and only if the two time periods start on the same clock tick, 

and the last clock tick in P1 is earlier than the last clock tick in P2. 
 

Allen relationship, [starts -1] 
Mechanics: P1 [starts-1] P2 if and only if (eff_beg_dt1 = eff_beg_dt2) AND (eff_end_dt1 > 

eff_end_dt2). 
Semantics: P1 [starts-1] P2 if and only if the two time periods start on the same clock tick, 

and the last clock tick in P1 is later than the last clock tick in P2.  
 

Allen relationships 
Mechanics: the set of thirteen positional relationships between two time periods, a time 

period and a point in time, or two points in time, as first defined in James F. 
Allen's 1983 article Maintaining Knowledge about Temporal Intervals. 

 
Semantics: the set of all possible positional relationships between two time periods, a 

time period and a point in time, or two points in time, defined along a common 
timeline. 

 
Comments:  

• The Allen relationships are mutually exclusive and jointly exhaustive. 
• Good discussions of the Allen relationships can also be found in (Snodgrass, 

2000), From Chapter 4, and (Date, Darwen and Lorentzos, 2002), From Chapter 
6. 

 
Components: time period, point in time. 
 

approval transaction 
Mechanics: a transaction that changes the assertion begin date on the assertions in a 

deferred assertion group to an earlier date. 
 
Semantics: a transaction that moves assertions in an deferred assertion group from far 

future assertion time to near future assertion time.  
 
Comments: 

• The transaction by which deferred assertions are moved close enough to Now() 
that the business is willing to let them become current by means of the passage of 
time. See fall into currency. 

 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Components: assertion, assertion begin date, deferred assertion group, far future assertion 
time, near future assertion time. 

 

as-is 
Mechanics: data whose assertion begin date is earlier than Now() and whose assertion 

end date is later than Now(). 
 
Semantics: data whose assertion time period is current. 
 
Comments:  

• See as-was. The as-is vs. as-was distinction is often confused with the distinction 
between current and past versions. Many best practices implementations of 
versioning do not distinguish between the two, and therefore introduce 
ambiguities into their temporal semantics. 

 
Components: assertion begin date, assertion end date, assertion time period, Now(). 
 

assert 
Mechanics: to place a row in an asserted version table in current assertion time. 
 
Semantics: to claim that a row in an asserted version table makes a true and/or actionable 

statement. 
 
Components: actionable, asserted version table, current assertion, statement. 
 

asserted version table 
Mechanics: a bi-temporal table in which each row can exist in past, present or future 

assertion time, and also in past, present or future effective time. 
 
Semantics: a table each of whose rows indicates when the object it represents is as its 

business data describes it, and when that row is claimed to make a true and/or 
actionable statement about that object. 

 
Comments: 

• In contrast, rows in bi-temporal tables of the standard temporal model cannot 
exist in future assertion time. 

• Also, a table whose structure conforms to the schema presented in Chapter 6. See 
bi-temporal data canonical form. 

 
Components: actionable, assertion time, bi-temporal table, business data, effective time, 

object, statement. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Asserted Versioning database 
Mechanics: a database that contains at least one asserted version table. 
 
Components: asserted version table. 
 

Asserted Versioning Framework 
Mechanics: software which (i) generates asserted version tables from logical data models 

and associated metadata; (ii) enforces temporal entity integrity and temporal 
referential integrity constraints as asserted version tables are maintained; (iii) 
translates temporal insert, update and delete transactions into the physical 
transactions which maintain an asserted version table; and (iv) internalizes 
pipeline datasets. 

 
Comments:  

• The Asserted Versioning Framework is software developed by the authors which 
implements Asserted Versioning. 

 
Components: asserted version table, internalization of pipeline datasets, physical 

transaction, temporal data management {the Asserted Versioning temporal 
model}, temporal entity integrity, temporal referential integrity, temporal 
transaction. 

 

assertion 
Mechanics: the temporally delimited claim that a row in an asserted version table makes a 

true and/or actionable statement about what the object it represents is like during 
the time period designated by that version of that object. 

 
Semantics: the claim that a statement is true and/or actionable. 
 
Components: actionable, asserted version table, object, statement, time period, version. 
 

assertion approval date 
Mechanics: the new assertion begin date which an approval transaction specifies for the 

assertions in a deferred assertion group. 
 
Semantics: the near future assertion time date to which all assertions in a deferred 

assertion group are to be retrograde moved.  
 
Components: approval transaction, assertion, assertion begin date, deferred assertion 

group, near future assertion time, retrograde movement. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

assertion begin date 
Mechanics: the begin date of the assertion time period of a row in an asserted version 

table. 
 
Semantics: the date indicating when a version begins to be asserted as a true and/or 

actionable statement of what its object is like during its indicated period of 
effective time. 

 
Comments. 

• A row can never be inserted with an assertion begin date in the past, because an 
assertion cannot exist prior to the row whose truth it asserts. See temporalized 
extension of the Closed World Assumption. 

• But a row can be inserted with an assertion begin date in the future because when 
that future date comes to pass, the row will already exist. See deferred assertion. 

 
Components: actionable, assert, assertion time period, asserted version table, begin date, 

effective time period, object, version. 
 

assertion end date 
Mechanics: the date on which the assertion time period of a row in an asserted version 

table ends, or a date indicating that the end of the assertion time period is 
unknown but presumed to be later than Now(). 

 
Semantics: the date indicating when a version stops being asserted as a true and/or 

actionable statement of what its object is like during its indicated period of 
effective time, or indicating that the end of the assertion time period is unknown 
but presumed to be later than Now(). 

 
Comments. 

• An assertion end date is always set to 9999 when its row is inserted. It retains that 
value unless and until that assertion is withdrawn. 

 
Components: actionable, assertion time period, asserted version table, effective time 

period, end date, Now(), object, statement, version.  
 

assertion group 
Mechanics: a group of one or more deferred assertions, sharing the same assertion begin 

date. 
 
Semantics: a group of one or more assertions sharing the same future assertion time 

period. 
 
Components: assertion, assertion begin date, deferred assertion, future assertion time 

period. 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

 

assertion group date 
Mechanics: the assertion begin date on a group of one or more deferred assertions. 
 
Semantics: the date which indicates when a group of deferred assertions will become 

currently asserted. 
 
Comments: 

• This date is also the unique identifier of an assertion group. 
 
Components: assertion begin date, currently asserted, deferred assertion. 
 

assertion table 
Mechanics: a uni-temporal table whose explicitly represented time is assertion time. 
 
Semantics: a uni-temporal table each of whose rows is a temporally-delimited assertion 

about what its object is like Now(). 
 
Components: uni-temporal, assertion, assertion time, Now(), object. 
 

assertion time 
Mechanics: a series of clock ticks, extending from the earliest to the latest clock ticks 

which the DBMS can recognize, within which assertion begin and end dates are 
located. 

 
Semantics: the temporal dimension which interprets a time period associated with a row 

as indicating when that row is asserted to be true. 
 
Components: assertion begin date, assertion end date, clock tick, temporal dimension, 

time period.  
 

assertion time period 
Mechanics: a time period in assertion time associated with a specific row in an asserted 

version table. 
 
Semantics: the period of time during which a row in an asserted version table is claimed 

to make a true and/or actionable statement. 
 
Components: actionable, asserted version table, assertion time, statement, time period. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

as-was 
Mechanics: data whose assertion end date is earlier than Now(). 
 
Semantics: data whose assertion time period is past. 
 
Comments:  

• See as-is. The as-was vs. as-is distinction is an assertion time distinction, but 
in supporting temporal data management in their databases, IT professionals 
often confuse this distinction with the effective time distinction between past 
and current versions. 

 
Components: assertion end date, assertion time period, Now(). 
 

atomic clock tick 
Mechanics: the smallest unit of time kept by a computer's clock that can be recognized by 

a specific DBMS. 
 
Semantics: a unit of time that is indivisible for purposes of temporal data management. 
 
Comments: 

• See clock tick. 
 
Components: N/A. 
 

AVF 
See Asserted Versioning Framework. 
 

basic temporal transaction 
Mechanics: a temporal transaction which does not specify any temporal parameters. 
 
Semantics: a temporal transaction which accepts the default values for its temporal 

parameters, those being an effective begin date of Now(), an effective end date of 
9999, an assertion begin date of Now() and an assertion end date of 9999. 

 
Comments: 

• Assertion end dates are the one temporal parameter than cannot be specified 
on temporal transactions. All temporal transactions, including basic ones, 
create asserted version rows with an assertion end date of 9999. 

 
Components: assertion begin date, assertion end date, effective begin date, effective end 

date, Now(), temporal parameter, temporal transaction. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

basic versioning 
Mechanics: a form of versioning in which a version date is added to the primary key of 

an otherwise non-temporal table. 
 
Semantics: a form of versioning in which all versions of the same object are contiguous. 
 
Comments:  

• Basic versioning is not part of Asserted Versioning. It is a form of best 
practices versioning. See Chapter 4. 

• See also: logical delete versioning, temporal gap versioning, effective time 
versioning. 

 
Components: contiguous, object, non-temporal table, version. 
 

begin date 
Mechanics: an assertion begin date or an effective begin date. 
 
Semantics: a date which marks the start of an assertion or an effective time period. 
 
Components: assertion begin date, assertion time period, effective begin date, effective 

time period. 
 

bi-temporal data canonical form 
Mechanics: the schema common to all asserted version tables. 
 
Semantics: a single schema which can express the full range of bi-temporal semantics. 
 
Comments: 

• Any history table, logfile, or version table can be transformed into an asserted 
version table without loss of content.  

 
Components: asserted version table, bi-temporal. 
 

bi-temporal database 
Mechanics: a database containing at least one bi-temporal table. 
 
Components: bi-temporal table. 
 

bi-temporal envelope 
Semantics: a specified effective time period, included within a specified assertion time 

period.  
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Comments: 
• The temporal scope of every temporal transaction is delimited by the bi-temporal 

envelope specified on the transaction. 
• Every row in an asserted version table exists in a bi-temporal envelope. 

 
Components: assertion time period, effective time period, include. 
 

bi-temporal table 
Mechanics: a table whose rows contain one pair of dates which define an epistemological 

time period, and a second pair of dates which define an ontological time period. 
 
Semantics: a table whose rows contain data about both the past, the present and the future 

of things, and also about the past, the present and the future of our beliefs about 
those things. 

 
Comments. 

• See epistemological time, ontological time.  
 
Components: "assert" cognate (belief), epistemological time, ontological time, thing, time 

period. 
 

business data 
Mechanics: all columns of an asserted version table other than those columns which 

implement Asserted Versioning. 
 
Semantics: the columns of data which record the properties or relationships of objects 

during one or more periods of effective time. 
 
Components: asserted version table, effective time, object. 
 

business key 
Mechanics: the primary key of the entity in the logical data model from which an asserted 

version table is generated. 
 
Semantics: the unique identifier for an object as represented in a non-temporal table. 
 
Comments:  

• If a surrogate key is used in the logical data model, this surrogate key is used as 
the business key in an asserted version table. 

 
Components: asserted version table, non-temporal table, object. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

child managed object 
Mechanics: a version in a TRI relationship. 
 
Semantics: a managed object which represents a child object. 
 
Components: child object, TRI, version. 
 

child object 
Semantics: an object, represented by a managed object, which is existence-dependent on 
another object, also represented by a managed object. 
 
Components: existence dependency, managed object, object, represent.  
 

child row 
Mechanics: a row in an asserted version table which contains a non-null temporal foreign 

key. 
 
Semantics: a version which represents an object which is existence-dependent on some 

other object.  
 
Comments. 

• The various "parent" and "child" expressions also apply to conventional tables, of 
course, in which case the relationship involved is referential integrity, not 
temporal referential integrity. But in this Glossary, we are explicitly defining 
these expressions as they apply to asserted version tables. 

 
Components: asserted version table, existence dependency, object, temporal foreign key. 
 

child table 
Mechanics: a table which contains at least one temporal foreign key.  
 
Semantics: a table whose rows represent child objects. 
 
Components: child object, temporal foreign key. 
 

child version 
Mechanics: a version in an asserted version table X is a child to an episode in asserted 

version table Y if and only if the version in X has a temporal foreign key whose 
value is identical to the value of the object identifier of that episode in Y, and the 
effective time period of that episode in Y [fills-1] the effective time period of that 
version in X.  

 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Semantics: a version in an asserted version table X is a child to an episode in asserted 
version  table Y if and only if the object for that version in X is existence 
dependent on the object for that episode in Y, and the effective time period of that 
episode in Y [fills-1]the effective time period of that version in X. 

 
Components: Allen relationship [fills-1], asserted version table, effective time period, 

episode, existence dependency, object, object identifier, temporal foreign key, 
version. 

 

chronon 
Semantics: the term used in the computer science community for what Asserted 

Versioning calls an atomic clock tick. 
 
Comments:  

• See the 1992 entry in the bibliography for the standard computer science glossary 
of bi-temporal concepts. 

 
Components: atomic clock tick. 
 

circa flag 
Mechanics: a flag used by the Asserted Versioning Framework as a component of one or 

more indexes on asserted version tables, in order to improve the performance of 
queries which reference asserted version tables, and also of updates to those 
tables. 

 
Semantics: a flag which distinguishes between rows which are definitely known to be in 

the assertion time past from all other rows. (From Chapter 15).  
 
Components: Asserted Versioning Framework, asserted version table, assertion time. 
 

clock tick 
Mechanics: the unit of time used for effective begin and end dates, assertion begin and 

end dates, episode begin dates and row create dates, in an asserted version table. 
 
Semantics: the transition from one point in effective time or assertion time to the next 

point in effective time or assertion time, according to the chosen granularity 
which defines those two points in time as contiguous. 

 
Comments: 

• Note that chronons are atomic clock ticks, not clock ticks. 
• A one month per tick clock represents a situation in which a database is updated 

at most once a month. By the same token, a one week or one day clock would 
record updates that take place at most once a week or once daily, respectively. 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

 
Components: asserted version table, assertion begin date, assertion end date, contiguous, 

effective begin date, effective end date, granularity, episode begin date, point in 
time, row create date. 

 

closed assertion 
Mechanics: a row in an asserted version table whose assertion end date is not 9999. 
 
Semantics: a row in an asserted version table with a known assertion end date. 
 
Components: asserted version table, assertion end date, 9999. 
 

closed assertion time 
Mechanics: an assertion time period whose end date is not 9999. 
 
Semantics: an assertion time period whose end date is known. 
 
Components: 9999, assertion end date, assertion time period. 
 

closed effective time 
Mechanics: a effective time period whose end date is not 9999. 
 
Semantics: an effective time period whose end date is known. 
 
Components: 9999, effective end date, effective time period. 
 
 

closed episode 
Mechanics: an episode whose effective end date is not 9999. 
 
Semantics: an episode whose effective end date is known. 
 
Components: 9999, effective end date, episode. 
 

closed-closed 
Mechanics: a convention for using a pair of clock ticks to designate an effective or 

assertion time period, in which the earlier clock tick is the first clock tick in the 
time period, and in which the later clock tick is the last clock tick in the time 
period.  

 
Comments:  



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

• Using this convention, two time periods [meet] if and only if the begin date of the 
later one is one clock tick after the end date of the earlier one, at whatever level of 
granularity is used to designate the clock ticks. 

 
Components: assertion time period, clock tick, effective time period. 
 

closed-open 
Mechanics: a convention for using a pair of clock ticks to designate an effective or 

assertion time period, in which the earlier clock tick is the first clock tick in the 
time period, and in which the later clock tick is the first clock tick after the last 
clock tick in the time period.  

 
Comments:  

• Using this convention, two time periods [meet] if and only if the begin date of the 
later one is the same clock tick as the end date of the earlier one, at whatever level 
of granularity is used to designate the clock ticks.  

 
Components: assertion time period, clock tick, effective time period. 
 

conditional temporal transaction 
Mechanics: a temporal transaction qualified by one or more WHERE clause business data 

predicates. 
 
Components: business data, temporal transaction. 
 

contiguous 
Mechanics: time period or point in time X is contiguous with time period or point in time 

Y if and only if either X [meets] Y or X [meet-1] Y. 
 
Components: Allen relationship [meet], Allen relationship [meet-1], point in time, time 

period. 
 

conventional data 
Mechanics: data in a conventional table. 
 
Semantics: data which represents currently asserted current versions of persistent objects, 
but which lacks assertion time periods and effective time periods. 
 
Comments:  

• More accurately, conventional data is data which lacks explicitly expressed 
assertion and effective time periods. For in fact, conventional data is asserted, and 
its assertion time period is co-extensive with its physically presence in the 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

database. And conventional data is also versioned, and the effective time of the 
one version of an object thus represented is always from Now() until further 
notice. 

 
Components: assertion time period, conventional table, currently asserted current version, 

effective time period, persistent object. 
 

conventional database 
Mechanics: a database none of whose tables are temporal. 
 
Semantics: a table whose rows describe the current state of the objects they represent. 
 
Comments:  

• In the early part of the book, used as synonymous with "non-temporal database". 
But starting in Chapter 15, a distinction is drawn in which a conventional database 
may contain temporal data about persistent objects, but not in the form of bi-
temporal tables. 

 
Components: object, represent, state. 
 

conventional table 
Mechanics: a table whose rows have no assertion or effective time periods. 
 
Semantics: a table whose rows contain data describing what we currently claim things are 

currently like. 
 
Components: assertion time period, effective time period, thing. 
 

conventional transaction 
Mechanics: an insert, update or delete against a conventional table. 
 
Semantics: a request to create, modify or remove a row in a conventional table. 
 
Comments:  

• Conventional transactions are SQL insert, update or delete statements. 
 
Components: conventional table. 
 

current assertion 
 See currently asserted. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

current episode 
Mechanics: an episode whose episode begin date is earlier than Now() and whose episode 

end date is later than Now(). 
 
Semantics: an episode for an object which includes a current version of that object. 
 
Comments: 

• An object may have at most one current episode. 
• A past episode is not a current episode because its effective time period is past. 
• A no longer asserted episode is not a current episode because its assertion time 

period is past. 
• An episode all of whose assertions are deferred is not a current episode because it 

is not yet asserted. 
• An episode all of whose versions have an effective begin date in the future is not a 

current episode because it has no current version. 
 
Components: episode begin date, episode end date, Now(), object, version. 
 

current transaction 
Mechanics: a temporal transaction which becomes currently effective as soon as it is 

applied to the database, and which also becomes currently asserted as soon as it is 
applied to the database. 

 
Semantics: a temporal transaction which accepts the date the transaction is submitted as 

the begin date of the assertion period within which its transformations will be 
contained, and also as the begin date of the effective period within which its 
transformations will be contained. 

 
Comments:  

• See deferred transaction, proactive transaction, retroactive transaction. 
 
Components: assertion time period, begin date, currently asserted, currently effective, 

effective time period, temporal transaction. 
 

current version 
 See currently effective. 
 

currently asserted 
Mechanics: a row in an asserted version table whose assertion time period includes 

Now(). 
 
Semantics: a statement which we currently claim is true and/or actionable. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Components: actionable, asserted version table, assertion time period, include, Now(), 
statement. 

 

currently asserted current version 
Mechanics: a row in an asserted version table whose assertion time period includes 

Now(), and whose effective time period includes Now(). 
 
Semantics: a row in an asserted version table which represents our current belief that the 

statement made by the business data in that row correctly describes what its object 
is currently like. 

 
Comments: 

• Rows in conventional tables are currently asserted current versions of the objects 
they represent. 

 
Components: "assert" cognate (belief), asserted version table, assertion time period, 

business data, effective time period, include, Now(), object, statement. 
 

currently effective 
Mechanics: a row in an asserted version table whose effective time period includes 

Now(). 
 
Semantics: a statement which describes what the object it represents is currently like. 
 
Components: asserted version table, effective time period, include, Now(), object, 

represent, statement. 
 

dataset 
Mechanics: a named collection of data that the operating system, or the DBMS, or the 

AVF, can recognize and manage as a single object. 
 
Semantics: a managed object which represents a type, and which contains multiple 

managed objects each of which represent an instance of that type. 
 
Comments: 

• See also the Wikipedia definition. 
 
Components: AVF, instance, managed object, object, type. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

de-dupped 
Mechanics: a conventional table from which multiple rows representing the same object 

have been eliminated and/or consolidated, leaving at most one row to represent 
each object. 

 
Semantics: a table from which row-level synonyms have been eliminated. 
 
Comments: 

• If a table needs to be de-dupped, it is because its business keys are not reliable. In 
a world of pure theory, rows with unreliable business keys would not be allowed 
into a table. But business requirements for such data, however unreliable, 
frequently outweigh theoretical considerations. 

• See also: dirty data, row-level homonym, row-level synonym. 
 
Components: conventional table, object, represent, row-level synonym. 
 

deferred assertion 
Mechanics: a row in an asserted version table whose assertion begin date is greater than 

Now(). 
 
Semantics: an assertion which will not be made until some future date. 
 
Components: asserted version table, assertion begin date, Now(). 
 

deferred assertion group 
Mechanics: a collection of one or more rows in an asserted version table which all have 

the same future assertion begin date. 
 
Components: assertion begin date, asserted version table. 
 

deferred transaction 
Mechanics: a temporal transaction which uses a future date as its assertion begin date. 
 
Semantics: a temporal transaction which creates a deferred assertion. 
 
Components: assertion begin date, deferred assertion, temporal transaction. 
 

deMorgan's equivalences 
Mechanics: NOT(X OR Y) is truth-functionally equivalent to (NOT-X AND NOT-Y). 

(ii) (NOT-X OR NOT-Y) is truth-functionally equivalent to NOT(X AND Y). 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Semantics: (i) if it's false that either of two statements is true, then it's true that both of 
them are false. (ii) If either of two statements is false, then it's false that they are 
both true. 

 
Comments: 

• Along with the truth-functional equivalence of (P IMPLIES Q) with (NOT-P OR 
Q), the deMorgan's equivalences allow any statement in propositional logic to be 
broken down into a series of ORs or a series of ANDs (including, in both cases, 
the NOT operand). In these simplified forms, computer software can carry out 
logic proofs, discovering contradictions when they exist, and presenting the 
logical implications of a set of assertions, many of which may turn out to be a 
surprise to those who accepted the original set of assertions.  

• Software which does this is called an inference engine. While relational databases 
are the principal way that software helps us reason about instances, inference 
engines are the principal way that software helps us reason about types. 
Reasoning about types is what formal ontology is about. It is not often recognized 
that formal ontology and relational databases are complementary in this way, as 
means of reasoning about, respectively, types and instances. 

 
Components: N/A. 
 

design encapsulation 
Mechanics: hiding all temporal design issues so that the design of a temporal database is 

a matter of (i) creating a conventional logical data model, (ii) designating those 
entities in the model which are to be physically generated as temporal tables, and 
(iii) describing all their temporal features in metadata tables. 

 
Semantics: the ability to declaratively express all temporal design requirements for a data 

model. 
 
Comments:  

• Recent consulting experience by the authors has demonstrated the very significant 
cost savings that result from the ability to exclude all temporal design 
considerations from the process of creating the logical data model for a database. 
Discussions of how to best implement project-specific temporal requirements are 
often difficult, lengthy, contentious and inconclusive – in short, costly. Those 
costs are incurred over and over again, for every data model in which even a 
single table must be given temporal capabilities. And almost every time, the result 
is a slightly different solution, whose maintenance and querying are never quite 
the same as for any other temporalized tables. Asserted Versioning's design 
encapsulation feature eliminates these costs, and guarantees a uniform 
implementation of temporal semantics across all tables in all databases in the 
enterprise. Moreover, firmly grounded in computer science research, Asserted 
Versioning guarantees that its single enterprise solution is a complete and correct 
implementation of bi-temporal semantics. 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

 
Components: temporal database. 
 

directly queryable data 
Description: data which doesn't need to be transformed before queries can be written 

against it. 
 
Comments:  

• Much of the temporal data in an enterprise is not directly queryable. 
• Even if one table of temporal data is directly queryable, the needs of any specific 

query may require access to multiple temporal tables, and often that combination 
of tables is not directly queryable. For example, a query may need both last year's 
customer data from an enterprise data warehouse, and last month's customer data 
from an Operational Data Store (ODS) history table. But it is unlikely that the 
schemas in the two databases are identical, and therefore unlikely that the 
combination of those tables is directly queryable. 

• With directly queryable data, nothing needs to be done to get the data ready to be 
queried, whether by native SQL or via query tools.  

 
Components: N/A. 
 

dirty data 
Mechanics: a collection of data whose instances do not all have unique identifiers. 
 
Semantics: a collection of data in which row-level homonyms and/or row-level synonyms 

may exist. 
 
Comments:  

• Among IT professionals, the term "dirty data" often has a broader meaning, and 
covers a wide range of problems with data. In this narrower sense, dirty data is the 
result of unreliable business keys.  

• See also: de-dupped, row-level homonym, row-level synonym. 
 
Components: row-level homonym, row-level synonym. 
 

effective begin date 
Mechanics: using the closed-open convention, the first date in an effective time period. 
 
Semantics: the date indicating when an effective time period begins. 
 
Comments:  

• The effective begin date of an episode is the effective begin date of its earliest 
version. 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

 
Components: closed-open, effective time period. 
 

effective end date 
Mechanics: using the closed-open convention, the first date after the last date in an 

effective time period. 
 
Semantics: the date indicating when an effective time period ends. 
 
Comments: 

• The effective end date of an episode is the effective end date of its latest version. 
 
Components: closed-open, effective time period. 
 

effective time 
Mechanics: the temporal dimension along which effective time periods are located. 
 
Semantics: the temporal dimension which interprets a time period on a row as indicating 

when the object represented by that row existed such that the row was the unique 
row validly representing that object. 

 
Comments: 

• We do not say “The temporal dimension which interprets a time period on a row 
as indicating when that row was the unique row validly representing that object” 
because that suggests that this temporal dimension is a property of rows. It is not. 
It is a property of objects represented by rows. 

• But assertion time periods are properties of rows or, more precisely, of the 
existentially quantified statements (assertions) made by those rows,  

 
Components: temporal dimension, effective time period, object, represent. 
 

effective time period  
Mechanics: the period of time of a version or an episode starting on its effective begin 

date and ending one clock tick prior to its effective end date. 
 
Semantics: the period of time during which an object exists, as asserted by a row in an 

asserted version table.  
 
Components: assert, asserted version table, clock tick, effective begin date, effective end 

date, episode, object, time period, version. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

effective time versioning 
Mechanics: a form of versioning similar to temporal gap versioning, but in which a row 

create date is added to each version, in addition to a version begin date and a 
version end date.  

 
Semantics: a form of versioning in which versions of the same object may or may not be 

contiguous, in which no version is physically deleted, in which the version dates 
delimit an effective time period, and in which the date the row was physically 
created is also provided.  

 
Comments:  

• Effective time versioning is not part of Asserted Versioning. See From 
Chapter 4. 

• See also: basic versioning, logical delete versioning, temporal gap versioning. 
 
Components: contiguous, effective time period, object, row create date, temporal gap 

versioning, version, version begin date, version end date. 
 

empty assertion time 
Mechanics: an assertion time period whose begin and end dates have the same value. 
 
Semantics: an assertion time period which includes no clock ticks. 
 
Comments: 

• Deferred assertions which are deleted before they become currently asserted are 
moved into empty assertion time, i.e. are given empty assertion time periods. 

 
Components: assertion begin date, assertion end date, assertion time period, clock tick. 
 

end date 
Mechanics: an assertion end date or an effective end date. 
 
Semantics: a date which marks the end of an assertion or an effective time period. 
 
Components: assertion end date, assertion time period, effective end date, effective time 

period. 
 

enterprise contextualization 
Mechanics: the expression of the Asserted Versioning Framework in a single unit of 

source code. 
 
Semantics: a implementation of a software framework to provide seamless access to 

queryable bi-temporal state data about persistent objects, consisting of: one 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

canonical set of schemas, across all tables and all databases; one set of 
transactions that update bi-temporal data and enforce temporal entity integrity and 
temporal referential integrity across all tables and all databases; a standard way to 
retrieve bi-temporal data; and a way to remove all temporal logic from application 
programs, isolate it in a separate layer of code, and invoke it declaratively. 

 
Components: Asserted Versioning Framework, persistent object, seamless access, 

temporal data management taxonomy (queryable temporal data) / (state temporal 
data) / (bi-temporal data), temporal entity integrity, temporal referential integrity. 

 

episode 
Mechanics: within shared assertion time, a series or one or more rows representing the 

same object in which, in effective time, each non-initial row [meets] the next one, 
in which the initial row is [before-1] any earlier row of the same object, and in 
which the latest row is [before] any later version of the same object.  

 
Semantics: within one period of assertion time, a set of one or more effective-time 

contiguous asserted version rows representing the same object which are preceded 
and followed by at least one effective-time clock tick in which that object is not 
represented.  

 
Comments: 

• This is one of the most important concepts in asserted versioning. 
• Episodes are a series of versions of the same object that are contiguous in 

effective time within a period of shared assertion time. They represent what we 
believe, during that period of assertion time, the life history of that object 
was/is/will be like, across those contiguous periods of effective time. (From 
Chapter 5.) 

 
Components: Allen relationship [before], Allen relationship [before-1], Allen relationship 

[meets], assertion time, clock tick, contiguous, effective time, object, represent, 
shared assertion time, version. 

 

episode begin date 
Mechanics: the effective begin date of the earliest version of an episode.  
 
Semantics: the date on which the episode begins to be in effect. 
 
Components: effective begin date, episode, version. 
 

episode end date 
Mechanics: the effective end date the latest version of an episode.  
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Semantics:  the date on which the episode ceases to be in effect. 
 
Components: effective end date, episode, version. 
 

epistemological time 
Semantics: the epistemological time of a row in a bi-temporal table is the period of time 

during which we claim that the statement made by that row is true and/or 
actionable. 

 
Comments:  

• A neutral term referring to either the standard temporal model's transaction time 
or to Asserted Versioning's assertion time. 

• See "assert" cognates. 
 
Components: actionable, "assert" cognates (claim), bi-temporal table, statement, time 

period.  
 

event 
Semantics: a point in time or a period of time during which one or more objects come 

into existence, change from one state to another state, or go out of existence. 
 
Comments:  

• Events are the occasions on which changes happen to persistent objects. As 
events, they have two important features: (i) they occur at a point in time, or 
sometimes last for a limited period of time; and (ii) in either case, they do not 
change. An event happens, and then it's over. Once it's over, that's it; it is frozen 
in time. (From Chapter 2.) 

 
Components: point in time, period of time, object, persistent object, state. 
 

existence dependency 
Mechanics: a version of object X is existence dependent on an episode of object Y if and 

only if there can be no clock tick in assertion time during which there is a clock 
tick in effective time occupied by X but not occupied by Y. 

 
Semantics: an object X is existence dependent on an object Y if and only if there can be 

no point in time at which X exists but Y does not exist. 
 
Comments: 

• Existence dependency is expressed by a foreign key if and only if the objects are 
represented in conventional tables. 

• Existence dependency is expressed by a temporal foreign key if and only if the 
objects are represented in asserted version tables. 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

• Note the "can be". If "is" were in its place, the statements would express a 
correlation, but not a requirement. 

 
Components: assertion time, clock tick, effective time, episode, object, occupy, version. 
 

explicitly temporal data 
Mechanics: a row of data which contains an assertion time period and/or an effective time 

period. 
 
Semantics: a row of data whose assertion time and/or effective time is expressed by 

means of one or more columns of data. 
 
Comments: 

• See implicitly temporal data. 
 
Components: assertion time, effective time. 
 

external pipeline dataset 
Mechanics: a dataset whose destination or origin is one or more production tables, and 

which is a distinct managed object to the operating system and/or the DBMS. 
 
Semantics: a dataset whose contents are production data. 
 
Comments: 

• See the Wikipedia definition. 
• Tabular data which will become part of the production database are transactions 

acquired or generated by a company's OLTP systems. They are either 
immediately and directly applied to the production database, or are augmented, 
corrected or otherwise transformed as they are moved along an "inflow data 
pipeline" leading into the production database. 

• Tabular data which has been a part of the production database are the persisted 
result sets of SQL queries or equivalent processes. They are either end state result 
sets, i.e. immediately delivered to internal business users or exported to outside 
users, or are augmented as they move along an "outflow data pipeline"  leading to 
a final state in which they are delivered to internal business users or outside users. 

• The various kinds of external pipeline datasets do not form a partitioning. Most of 
these names are in fairly widespread usage, but no standard definition of them 
exists. Therefore, in this Glossary, we will provide a description of them, but 
cannot provide a definition.  

• The distinction between inflow pipeline datasets and outflow pipeline datasets is a 
matter of perspective. Any physical dataset may be used to update a production 
table, in which case it is an inflow dataset. And any physical dataset other than 
those created by means of manual data entry or automated data collection from 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

instruments, for example, contain data from production tables and so are outflow 
datasets. 

 
Components: dataset, managed object, production data, production table. 
 

external pipeline dataset, batch file  
Description: this term is generally used to refer to a file or a table of insert, update and/or 

delete transactions whose target is a production table. It is a dataset that exists at 
the start of an inflow pipeline.  

 

external pipeline dataset, data extract  
Description: this term is generally used to refer to the results of a query which are stored 

as a physical dataset which will be moved to some other location before being 
made available to end users. It is a dataset that exists along an outflow pipeline. 

 

external pipeline dataset, data feed 
Description: this term is generally used to refer to a dataset which is being used to 

populate a production table. It is a dataset that exists at the end of an inflow 
pipeline to its target.  

 
Comments: 

• Of course, the same physical dataset which was an extract may, with or without 
going through additional modifications, also be a feed. 

 

external pipeline dataset, data staging area 
Description: this term is generally used to refer to a physical dataset of production data 

that is being worked on until it can be moved into its target production table.  
 
Comments:  

• When applied to a production table, the contents of a data staging area may or 
may not overlay rows already in that table.  

• The contents of a data staging area may have originated as a copy of rows in a 
production table, or simply be a collection of transactions each of which requires 
data from multiple sources, and so must be built up over time. If it originated as a 
copy of production rows, it is both an outflow pipeline dataset and, later on, an 
inflow pipeline dataset. 

• The purpose of a staging area is to move the row or rows representing an object 
into a state where they are not available to normal queries. The reason for doing 
this is usually to withdraw those rows into an area where a series of updates can 
be made to them, only after which are those rows returned to production data 
status. 

 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

external pipeline dataset, history table 
Description: this term is generally used to refer to a table of data which contains the 

before-image copies of production rows which are about to be updated. It is a 
dataset that exists at the end of a (very short) outflow pipeline. 

 

external pipeline dataset, logfile table 
Mechanics: this term is generally used to refer to a table of data which contains the 

before-image copies of production rows which are about to be inserted, updated 
or deleted. It is a dataset that exists at the end of a (very short) outflow pipeline. 

 

external pipeline dataset, query result set 
Mechanics: this term is always used to refer to the results of an SQL query. It is a dataset 

that exists at the start of an outflow pipeline. 
 

external pipeline dataset, report 
Description: this term is generally used to refer to a dataset at the end of an outflow 

pipeline, at which point the data can be directly viewed. 
 

external pipeline dataset, screen 
Mechanics: this term is generally used to refer to a dataset at the end of an outflow 

pipeline, at which point the data can be directly viewed.  
 
Comments: 

• Aside from the difference in media (video display vs. hardcopy), screens differ 
from reports in that reports usually contain data representing many objects, while 
screens usually contain data representing one object or a few objects. 

 

fall into currency 
Mechanics: to become a current assertion and/or a current version when an assertion 

and/or effective begin date becomes a date in the past. 
 
Semantics: to become a current assertion and/or a currently version because of the 

passage of time. 
 
Comments: 

• Once an assertion and/or a version falls into currency, it remains current until its 
end date becomes a date in the past. 

 
Components: assertion begin date, current assertion, effective begin date, current version, 

passage of time. 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

 

fall out of currency 
Mechanics: to become a past assertion and/or a past version when an assertion and/or 

effective end date becomes a date in the past. 
 
Semantics: to become a past assertion and/or a past version because of the passage of 

time. 
 
Components: assertion end date, effective end date, passage of time, past assertion, past 

version.  
 

far future assertion time 
Mechanics: the assertion time location of deferred assertions whose begin dates are far in 

the future.  
 
Semantics: the assertion time location of deferred assertions that would be obsolete 

before the passage of time made them current. 
 
Comments: 

• See near future assertion time. 
• A typical far future assertion begin date would be hundreds or even thousands of 

years in the future. In business databases, there is little risk of such assertions 
falling into currency by the mere passage of time. 

• The intent, with far future deferred assertions, is that they exist in a "temporal 
sandbox" within a production table. They can be used for forecasting, for "what 
if" analyses, or for building up or otherwise working on one or more assertions 
until those assertions are ready to become visible in the production table that 
physically contains them. When they are ready, an approval transaction will move 
them to near future assertion time, where the passage of time will quickly make 
them current assertions. 

 
Components: assertion begin date, assertion time, current assertion, deferred assertion, 

passage of time. 
 

fCTD function 
Mechanics: a function that converts an integer into that integer number of clock ticks of 

the correct granularity. 
 
Comments: 

• "CTD" stands for "clock tick duration". (From Chapter 14.) 
 
Components: clock tick, granularity. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

fCUT function 
Mechanics: a function that splits a row in an asserted version table into two contiguous 

versions in order to [align] version boundaries in a target table to effective time 
boundaries on a temporal transaction. 

 
Comments: 

• A temporal update or delete transaction will affect only clock ticks within the 
effective time period specified by the transaction.  

• If the first clock tick in the transaction's effective time period is a non-initial clock 
tick in a version of the object referenced by the transaction, then that version must 
be split into a contiguous pair of otherwise identical versions.  

• If the last clock tick in the transaction's effective time period is a non-final clock 
tick in a version of the object referenced by the transaction, then that version must 
be split into a contiguous pair of otherwise identical versions.  

• The result is that the temporal transaction can be carried out by updating or 
deleting complete versions. 

• See match. 
 
Components: Allen relationship [align], asserted version table, contiguous, effective time, 

target table, temporal transaction, version. 
 

from now on 
Mechanics: a time period of [Now() – 9999], where Now() is the clock tick current when 

the time period was created. 
 
Semantics: a time period which is current from the moment it is created until further 

notice. 
 
Comments: 

• That current assertion time starts Now(), i.e. when the transaction is processed, 
and continues on until further notice. Every temporal transaction that accepts the 
default values for effective time, creates a version that describes what its object 
looks like from now on. Every non-deferred temporal transaction creates an 
assertion that, from now on, claims that its version makes a true statement. (From 
Chapter 9.) 

 
Components: 9999, clock tick, Now(), time period, until further notice. 
 

fTRI function 
Mechanics: a function that evaluates to True if and only if a valid TRI relationship holds 

between the episode and the version specified in the function. 
 
Components: episode, TRI, version. 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

 

future assertion 
 See deferred assertion. 
 

future version 
Mechanics: a row in an asserted version table whose effective begin date is later than 

Now(). 
 
Semantics: a row in an asserted version table which describes what the object it 

represents will be like during a specified future period of time. 
 
Components: asserted version table, effective begin date, Now(), object, represent, time 

period. 
 

granularity 
Mechanics: the size of the unit of time used to delineate effective time periods and 

assertion time periods in an asserted version table. 
 
Comments: 

• More generally, the granularity of a measurement is the size of the units in which 
the measurement is expressed, a smaller size referred to as a "finer" granularity. 
For example, inches are a finer granularity of linear measurement than yards, and 
ounces are a finer granularity of the measurement of weight than pounds. 

 
Components: asserted version table, assertion time period, effective time period. 
 

hand-over clock tick 
Semantics: the point in near future assertion time to which an approval transaction sets 

the assertion begin date of one or more deferred assertions, and also the assertion 
end date of any assertions which they replace or supercede. 

 
Components: approval transaction, assertion begin date, assertion end date, deferred 

assertion, near future assertion time, replace, supercede. 
 

historical data 
Mechanics: rows in asserted version tables whose effective end date is earlier than 

Now(). 
 
Semantics: data which describes the past state or states of a persistent object. 
 
Comments:  



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

• Note that this term does not refer to data which is historical, i.e. no longer current 
date, but rather to data which is about history, i.e. about the past states of 
persistent objects. 

• For the term which does refer to data which is itself historical, see as-was data. 
• Note that, in the special sense used here, historical data is data about persistent 

objects. Thus, fact/dimension data marts do not provide historical data because 
their history is a history of events, not of objects. 

 
Components: asserted version table, effective end date, Now(), persistent object, state. 
 

implicitly temporal data 
Mechanics: a row in a non-temporal table whose assertion time and/or effective time is 

co-extensive with its physical presence in its table. 
 
Semantics: a row of data whose assertion time and/or effective time is not expressed by 

means of one or more columns of data. 
 
Comments: 

• Thus, rows in conventional tables are implicitly temporal data. No columns of 
those tables indicate assertion or effective time periods. Each row is asserted for 
as long as it is present in its table, and is in effect for as long as it is present in its 
table. 

 
Components: assertion time, effective time, non-temporal table. 
 

incommensurable 
Mechanics: two asserted version rows are incommensurable if and only if their assertion 

time periods do not [intersect]. 
 
Semantics: unable to be meaningfully compared. 
 
Comments: 

• Rows which share no clock ticks in assertion time are semantically and truth-
functionally isolated from one another. They are what philosophers call 
incommensurable. (From Chapter 6.) 

• Incommensurability restricts TEI and TRI relationships to shared assertion time. 
 
Components: Allen relationship [intersect], asserted version table, assertion time period. 
 

inflow pipeline dataset 
Mechanics: a dataset whose destination is one or more production tables. 
 
Comments: 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

• Inflow pipeline datasets are tabular data which will become part of the production 
database. They originate with transactions acquired or generated by a company's 
OLTP systems. They are either immediately and directly applied to the production 
database, or are augmented, corrected or otherwise transformed as they are moved 
along an "inflow data pipeline" leading into the production database. 

 
Components: dataset, production table. 
 

instance 
Semantics: a thing of a particular type. 
 
Comments: 

• See type. 
• The concepts of types and instances has long history. A related distinction is that 

between particulars and universals. 
 
Components: thing, type. 
 

internalized pipeline dataset, Current Data 
Mechanics: all those rows in asserted version tables which lie in the assertion time 

present and also in the effective time present. (From Chapter 13.) 
 
Semantics: a record of what we currently believe things are currently like. 
 
Components: asserted version table, assertion time, effective time. 
 

internalized pipeline dataset, Current History 
Mechanics: all those rows in asserted version tables which lie in the assertion time 

present but in the effective time past. (From Chapter 13.) 
 
Semantics: a record of what we currently believe things used to be like. 
 
Components: asserted version table, assertion time, effective time. 
 

internalized pipeline dataset, Current Projections 
Mechanics: all those rows in asserted version tables which lie in the assertion time 

present but in the effective time future. (From Chapter 13.) 
 
Semantics: a record of what we currently believe things may eventually be like. 
 
Components: asserted version table, assertion time, effective time. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

internalized pipeline dataset, Pending History 
Mechanics: all those rows in asserted version tables which lie in the assertion time future 

but in the effective time past. (From Chapter 13.) 
 
Semantics: a record of what we may come to believe things used to be like. 
 
Components: asserted version table, assertion time, effective time. 
 

internalized pipeline dataset, Pending Projections 
Mechanics: all those rows in asserted version tables which lie in both the assertion time 

future and in the effective time future. (From Chapter 13.) 
 
Semantics: a record of what we may come to believe things may eventually be like. 
 
Components: asserted version table, assertion time, effective time. 
 

internalized pipeline dataset, Pending Updates 
Mechanics: all those rows in asserted version tables which lie in the assertion time future 

but in the effective time present. (From Chapter 13.) 
 
Semantics: a record of what we may come to believe things are currently like. 
 
Components: asserted version table, assertion time, effective time. 
 

internalized pipeline dataset, Posted History 
Mechanics: all those rows in asserted version tables which lie in both the assertion time 

past and also in the effective time past. (From Chapter 13). 
 
Semantics: a record of what we used to believe things used to be like. 
 
Components: asserted version table, assertion time, effective time. 
 

internalized pipeline dataset, Posted Projections 
Mechanics: all those rows in an asserted version table which lie in the assertion time past 

but in the effective time future. (From Chapter 13.) 
 
Semantics: a record of what we used to believe things may eventually be like. 
 
Components: asserted version table, assertion time, effective time. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

internalized pipeline dataset, Posted Updates 
Mechanics: all those rows in asserted version tables which lie in the assertion time past 

but in the effective time present. (From Chapter 13) 
 
Semantics: a record of what we used to believe things are currently like. 
 
Components: asserted version table, assertion time, effective time. 
 

lock 
Mechanics: to lock a row in an asserted version table is to set its assertion end date to a 

non-9999 value which is later than Now(). 
 
Semantics: to lock an asserted version row is to prevent it from being updated or deleted 

without moving it into past assertion time. 
 
Comments: 

• See withdraw. 
• A deferred transaction locks a row by setting its assertion end date to the assertion 

begin date of the deferred assertion it creates. Rows that are locked by means of 
deferred assertions remain currently asserted until their assertion end dates fall 
into the past. 

 
Components: 9999, asserted version table, assertion end date, Now(), past assertion. 
 

logical delete versioning 
Mechanics: a form of versioning similar to basic versioning, but in which delete 

transactions are carried out as logical deletions, not as physical deletions.  
 
Semantics: a form of versioning in which all versions of the same object are contiguous, 

and in which no version is physically deleted. 
 
Comments:  

• Logical delete versioning is not part of Asserted Versioning. See Chapter 4. 
• See also: basic versioning, temporal gap versioning, effective time versioning. 

 
Components: basic versioning, contiguous, object, version. 
 

maintenance encapsulation 
Mechanics: hiding the complexity of temporal insert, update and delete transactions so 

that a temporal transaction needs, in addition to the data supplied in a 
corresponding conventional transaction, either no additional data, or else one, two 
or three dates representing, respectively, the effective begin date of a version, the 
effective end date of a version or the assertion begin date of an assertion. 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

 
Semantics: the ability to express all temporal parameters on temporal transactions 

declaratively. 
 
Comments:  

• Maintenance encapsulation means that inserts, updates and deletes to bi-
temporal tables, and queries against them, are simple enough that anyone who 
could write them against non-temporal tables could also write them against 
these tables. (From Preface.) 

 
Components: assertion, assertion begin date, conventional transaction, effective begin 

date, effective end date, temporal transaction, version. 
 

managed object 
Semantics: a named data item or collection of data that is manipulable by the operating 

system, the DBMS or the AVF, and which references a persistent object. 
 
Comments: 

• For example, tables, rows, columns, versions and episodes are all managed 
objects. Individual customers, clients or policies, while examples of objects, are 
not examples of managed objects. 

• In the phrase "managed object", the word "object", by itself, has no meaning. In 
particular, it has no connection with the technical term "object". 

• For example, tables, rows, columns, versions and episodes are all managed 
objects. Individual customers, clients or policies, while examples of objects, are 
not examples of managed objects. 

• Managed objects are data which transformations and constraints treat as a single 
unit. (From Chapter 5.) 

 
Components: reference, persistent object. 
 

match 
Mechanics: to apply the fCUT function to any non-locked version in the target table of a 

temporal update or delete transaction whose effective time period [overlaps] that 
specified on the transaction. 

 
Semantics: to modify the target table for a temporal update or delete transaction so that 

there is no non-locked version for the object specified on the transaction whose 
effective time period [overlaps] the effective time period specified on the 
transaction. 

 
Components: Allen relationship [overlaps], effective time period, fCUT, lock, object, 

target table, temporal delete transaction, temporal update transaction, version. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

near future assertion time 
Mechanics: the assertion time location of deferred assertions whose begin dates are about 

to fall into currency.  
 
Semantics: the assertion time location of deferred assertions that the passage of time will 

make current soon enough to satisfy business requirements. 
 
Comments: 

• See far future assertion time. 
• Deferred assertions located in the near future will become current assertions as 

soon as enough time has passed. In a real-time update situation, a near future 
deferred assertion might be one with an assertion begin date just a few seconds 
from now. In a batch update situation, a near future deferred assertion might be 
one that does not become currently asserted until midnight, or perhaps even for 
another several days. What near future deferred assertions have in common is 
that, in all cases, the business is willing to wait for these assertions to fall into 
currency, i.e. to become current not because of some explicit action, but rather 
when the passage of time reaches their begin dates. (From Chapter 12.) 

 
Components: assertion begin date, assertion time, current assertion, deferred assertion, 

fall into currency, passage of time. 
 

non-contiguous 
Mechanics: time period or point in time X is non-contiguous with time period or point in 

time Y if and only if either X is [before] Y or X is [before-1] Y. 
 
Components: Allen relationship [before], Allen relationship [before-1], point in time, time 

period. 
 

non-temporal data 
 See conventional data. 
 

non-temporal database 
 See conventional database. 
 

non-temporal table 
See conventional table. 

 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Now() 
Mechanics: a DBMS-agnostic representation of a function which always returns the 

current clock tick. 
 
Semantics: a variable representing the current point in time. 
 
Comments: 

• SQL Server may use getdate(), and DB2 may use Current Timestamp or Current 
Date. (From Chapter 3.) 

• Now() stands for a function, not a value. However, we will often use Now() to 
designate a specific point in time. For example, we may say that a time period 
starts at Now() and continues on until 9999. This is a shorthand way of 
emphasizing that, whenever that time period was created, it was given as its begin 
date the value returned by Now() at that moment. (From Chapter 3.) 

 
Components: clock tick, point in time. 
 

object 
Mechanics: what is represented by the object identifier (oid) in an asserted version table. 
 
Semantics: an instance of a type of thing which exists over time, has properties and 

relationships, and can change over time. 
 
Comments: 

• See also: events. Events, whether points in time or durations in time, are not 
objects, because events, by definition, do not change. 

• Examples of objects include vendors, customers, employees, regulatory agencies, 
products, services, bills of material, invoices, purchase orders, claims, 
certifications, etc.  

 
Components: asserted version table, instance, object identifier, oid, represent, type, thing. 
 

object identifier 
Mechanics: the unique identifier of the persistent object represented by a row in an 

asserted version table, used as part of the primary key of that row.  
 
Comments:  

• The unique identifier of a row in an asserted version table is the concatenation of 
an object identifier, an effective begin date, and an assertion begin date. 

 
Components: asserted version table, persistent object. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

occupied 
Mechanics: a series of one or more clock ticks is occupied by an object if and only if 

those clock ticks are all included within the effective time period of a version of 
that object. 

 
Semantics: a time period is occupied by an object just in the object is represented in every 

clock tick in that time period. 
 
Components: clock tick, effective time period, include, object, represent, version. 
 

oid 
See object identifier. 
 

ontological time 
Semantics: the ontological time of a row in a bi-temporal table is the period of time 

during which its referenced object exists. 
 
Comments:  

• A neutral term referring to either the standard temporal model's valid time or to 
Asserted Versioning's effective time. 

 
Components: bi-temporal table, object, referent, time period.  
 

open episode 
Mechanics: An episode whose effective end date is 9999. 
 
Semantics: an episode whose effective end date is not known. 
 
Comments: 

• The effective end date of an episode is the effective end date of its latest version. 
 
Components: 9999, effective end date, episode. 
 

open version 
Mechanics: a version whose effective end date is 9999. 
 
Semantics: a version whose effective end date is unknown. 
 
Components: 9999, effective end date, version. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

open-closed 
Mechanics: a convention for using a pair of clock ticks to designate an effective or 

assertion time period, in which the earlier clock tick is the last clock tick before 
the first clock tick in the time period, and in which the later clock tick is the last 
clock tick in the time period. 

 
Comments:  

• Using this convention, two time periods [meet] if and only if the begin date of the 
later one is the same clock tick as the end date of the earlier one, at whatever level 
of granularity is used to designate the clock ticks. 

 
Components: assertion time period, clock tick, effective time period. 
 

open-open 
Mechanics: a convention for using a pair of clock ticks to designate an effective or 

assertion time period, in which the earlier clock tick is the last clock tick before 
the first clock tick in the time period, and in which the later clock tick is the first 
clock tick after the last clock tick in the time period.  

 
Comments:  

• Using this convention, two time periods [meet] if and only if the begin date of the 
later one is one clock tick before the end date of the earlier one, at whatever level 
of granularity is used to designate the clock ticks.  

 
Components: assertion time period, clock tick, effective time period. 
 

outflow pipeline dataset 
Mechanics: a dataset whose origin is one or more production tables. 
 
Comments: 

• Outflow pipeline datasets are tabular data which has been a part of the production 
database; they are the persisted result sets of SQL queries or equivalent processes. 
They are either end state result sets, i.e. immediately delivered to internal business 
users or exported to outside users, or are augmented as they move along an 
"outflow data pipeline"  leading to a final state in which they are delivered to 
internal business users or outside users. 

• The termination points of outflow pipelines may be either internal to the 
organization, or external to it; and we may think of the data that flows along these 
pipelines to be the result sets of queries applied to those production tables. (From 
Chapter 12.) 

 
Components: dataset, production table. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

override 
Mechanics: to set the assertion end date of a row to the same value as its assertion begin 

date. 
 
Semantics: to withdraw a row into empty assertion time. 
 
Comments: 

• An assertion is overridden only when an approval transaction retrograde moves a 
matching version to an earlier assertion period than the assertion period of the 
assertion being overridden. 

 
Components: assertion begin date, assertion end date, empty assertion time. 
 

parent episode 
Mechanics: an episode in an asserted version table X is a parent to a version in asserted 

version table Y if and only if the version in Y has a temporal foreign key whose 
value is identical to the value of the object identifier of that episode in X, and the 
effective time period of that episode in X includes ([fills -1]) the effective time 
period of that version in Y. 

 
Semantics: a, episode in an asserted version table X is a parent to a version in asserted 

version  table Y if and only if the object for that version in Y is existence 
dependent on the object for that episode in X, and the effective time period of that 
episode in X includes ([fills-1]) the effective time period of that version in Y. 

 
Components: Allen relationship [fills-1], asserted version table, effective time period, 

episode, existence dependency, include, object, object identifier, temporal foreign 
key, version.  

 

parent managed object 
Mechanics: an episode in a TRI relationship. 
 
Semantics: a managed object which represents a parent object.  
 
Components: episode, parent object, TRI. 
 

parent object 
Semantics: an object, represented by a managed object, on which another object, also 
represented by a managed object, is existence dependent. 
 
Components: existence dependency, managed object, object. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

parent table 
Mechanics: X is a parent table if and only if there is a table, not necessarily distinct, 

which contains a temporal foreign key which references X. 
 
Semantics: X is a parent table if and only if its rows represent parent objects. 
 
Components: temporal foreign key, parent object. 
 

passage of time 
Semantics: the means by which asserted versions may move from future to current, and 

from current to past time, in either or both temporal dimensions. 
 
Comments: 

• Creating future versions and/or deferred assertions is a way of managing a large 
volume of transactions so that the result of those transactions will all become 
current on exactly the same clock tick. An example would be a corporate 
acquisition in which the entire set of customers, policies, accounts and other 
objects managed by the acquired company need to become part of the acquiring 
company's production databases – and thus available to the maintenance 
processes, queries and reporting processes of the acquiring company – all at the 
same time, on precisely the same clock tick.  

 
Components: asserted version, temporal dimension. 
 

past assertion 
Mechanics: a row whose assertion end date is earlier than Now(). 
 
Semantics: a row which represents a statement we are no longer willing to claim is true 

and/or actionable. 
 
Components: actionable, assertion end date, Now(), represent, statement. 
 

past episode 
Mechanics: an episode of an object whose latest version has an effective end date which 

is earlier than Now(). 
 
Semantics: the representation of an object in a period of past effective time which is 

either [before] or [before-1] all other representations of the same object. 
 
Components: Allen relationship [before], Allen relationship [before-1], episode, effective 

end date, effective time, Now(), object, represent, version. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

past version 
Mechanics: a version of an object whose effective end date is earlier than Now(). 
 
Semantics: the representation of an object in a period of past effective time which [meets] 

and/or [meets-1] another representation of the same object. 
 
Components: Allen relationship [meets], Allen relationship [meets-1], effective end date, 

effective time, Now(), object, represent, version.  
 

pending transaction 
Description: an insert, update or delete statement that has been written but not yet 

submitted to the applications that maintain the production database. Sometimes 
pending transactions are collected outside the target database, in batch transaction 
files. More commonly, they are collected inside the target database, in batch 
transaction tables. (From Preface.) 

 
Comments:  

• Pending transactions are collected in batch transaction files. See external pipeline 
dataset, batch transaction file.  

• As internalized by Asserted Versioning, they are those semantic collections of 
asserted version rows called Pending History, Pending Updates and Pending 
Projections. 

 

PERIOD datatype 
Mechanics: the representation of a time period as a datatype. 
 
Semantics: the representation of a time period by a single column of data, a well-defined 

set or range of values, and a well-defined set of operations on those values. 
 
Comments: 

• Several DBMS vendors, including Oracle and Teradata, have defined PERIOD 
datatypes, but we do not know whether or not their definitions are equivalent. 

• We would regard any PERIOD datatype as inadequate unless it could express a 
time period with an unknown starting point or an unknown ending point. We 
would regard DBMS support for any PERIOD datatype as inadequate unless a 
unique index could be defined on any column with a PERIOD datatype that 
would treat any two time periods as duplicates if they shared even a single clock 
tick. 

 
Components: N/A. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

persistent object 
See object. 
 

physical logfile 
Mechanics: the ability of the AVF to recreate the state of an asserted version table as of 

any past point in time, using the row create date. 
 
Comments: 

• See semantic logfile. 
• Deferred assertions which have been retrograde moved from far future to near 

future assertion time are the one exception to this ability to recreate any past 
physical state of an asserted version table. Currently, Asserted Versioning does 
not preserve information about the far future assertion time these assertions 
originally existed in. (From Chapter 16) 
 

Components: asserted version table, AVF, row create date. 
 

physical transaction 
Description: a SQL insert, update or delete transaction submitted to the DBMS. 
 
Comments:  

• The AVF translates each temporal transaction into the one or more physical 
transactions that, when processed, carry out the intentions expressed by the user 
who submitted the temporal transaction. 

 

pipeline dataset 
Mechanics: a dataset whose destination or origin is one or more production tables. 
 
Comments:  

• Pipeline production datasets (pipeline datasets, for short) are points at which data 
comes to rest along the inflow pipelines whose termination points are production 
tables, or along the outflow pipelines whose points of origin are those same 
tables. (From Chapter 12.) 

 
Components: dataset, production table. 
 

pipeline dataset, internalization of 
Mechanics: the representation of the contents of external pipeline datasets as rows in 

asserted version production tables which exist in non-current assertion time and/or 
non-current effective time. 

 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Components: asserted version table, assertion time, current assertion, current version, 
effective time, external pipeline dataset, production table, represent. 

 

pipeline dataset, re-presentation of 
Mechanics: the ability to recreate the contents of any external pipeline dataset from 

internal pipeline datasets by means of a query.  
 
Components: external pipeline dataset, internalized pipeline dataset. 
 

point in time 
Mechanics: a time period whose begin date value is one clock tick before its end date 

value. 
 
Semantics: a time period consisting of a single clock tick. 
 
Comments:  

• For purposes of temporal data management, a point in time is considered 
indivisible.  

• Note that in this book, in which we use a month as our level of temporal 
granularity, that one month is considered indivisible. For example, if a transaction 
is applied, it is assumed that its results will remain unchanged until the next 
month. 

 
Components: begin date, clock tick, end date, time period. 
 

posted transaction 
Description: copies of data about to be inserted, and before-images of data about to be 

updated or deleted. The contents of various forms of logfiles. (From Preface.) 
 
Comments:  

• Posted transactions are collected in logfiles. See external pipeline dataset, logfile 
table. 

• As internalized by Asserted Versioning, they are those semantic collections of 
asserted version rows called Posted History, Posted Updates and Posted 
Projections. 

 

proactive delete 
Semantics: a temporal delete transaction that removes the representation of an object 

from one or more clock ticks in future effective time. 
 
Components: clock tick, effective time, object, represent, temporal transaction.  
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

proactive insert 
Semantics: a temporal insert transaction that adds the representation of an object to one or 

more clock ticks in future effective time. 
 
Components: clock tick, effective time, object, represent, temporal transaction. 
 

proactive transaction 
Mechanics: a temporal transaction that specifies a non-9999 effective end date that is 

later than Now().  
 
Semantics: a temporal transaction which anticipates the effective-time future. 
 
Comments:  

• See retroactive transaction. 
 
Components: temporal transaction, effective begin date. 
 

proactive update 
Semantics: a temporal update transaction that changes the business data representing an 

object in one or more clock ticks in future effective time. 
 
Components: business data, clock tick, effective time, object, represent, temporal 

transaction.  
 

production data 
Semantics: business data that describes the objects and events of interest to the business. 
 
Components: business data, object, event. 
 

production database 
Mechanics: a database that contains production data. 
 
Semantics: the logical collection of databases whose currently asserted contents are the 

company's official statements describing the objects and events represented by 
those statements. 

 
Comments: 

• Production databases are the collections of production datasets which the business 
recognizes as the official repositories of that data. Production databases consist of 
production tables. (From Chapter 12.) 

 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Components: currently asserted, event, object, production data, represent, statement. 
 

production dataset 
Description: a dataset that contains production data. 
 
 

production query 
Description: a query which is usually embedded in an application program, and which is 

run as part of the IT production schedule. 
 
Comments:  

• See also: ad hoc query. (From Chapter 5.) 
 

production row 
Mechanics: a row in a production table. 
 
Semantics: : a row which describes an object or event of interest to the business. 
 
Components: event, object, production table. 
 

production table 
Mechanics: a table in a production database. 
 
Semantics: a table whose rows describe an object or event of interest to the business. 
 
Comments:  

• The term "production" indicates that these tables are in use by business processes, 
and contain "real" data. Regularly scheduled processes are being carried out to 
maintain these tables, and to keep their contents as accurate, secure and current as 
possible. Regularly scheduled processes, as well as non-scheduled ones, are being 
carried out to access this data to obtain needed information. So production tables 
are the tables that the business tries to keep accurate, current and secure, and from 
which it draws the information it needs to carry out its mission and meet its 
objectives. (From Chapter 3.) 

• Production tables are production datasets whose data is designated as always 
reliable and always available for use. (From Chapter 12.) 

 
Components: event, object, production database. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

query encapsulation 
Mechanics: hiding the complexity of many temporal queries so that (i) a query as of a 

past or future point in either or both of the data's two temporal dimensions can be 
written as if it were a query against a conventional table with the addition or one 
or two predicates to the WHERE clause of the query; and (ii) a query for data 
current in both its temporal dimensions can be written as a conventional query 
against a view generated from a temporal table. 

 
Semantics: the ability to express most temporal query criteria with simple predicates 

added to the WHERE clause of an otherwise conventional query. 
 
Comments:  

• Query encapsulation means that queries against asserted version tables are simple 
enough that anyone who could write them against non-temporal tables could also 
write them against these tables. (From Preface.) 

 
Components: conventional table, temporal dimension, temporal table. 
 

queryable object 
Semantics: a managed object that can be named in an SQL query. 
 
Components: managed object. 
 

referent 
Mechanics: the persistent object identified by the object identifier of a row in an asserted 

version table. 
 
Semantics: whatever is referred to and described by a managed object. 
 
Components: asserted version table, managed object, object identifier, persistent object. 
 

reliable business key 
Mechanics: a business key which can be used to match data on a temporal transaction to 

one or more rows in the target table for that transaction.  
 
Semantics: a business key which represents one and only one object. 
 
Components: business key, object, represent, target table, temporal transaction. 
 

replace 
Mechanics: a row X replaces a row Y if and only if X and Y both represent the same 

object, X's effective time period [equals] Y's effective time period, X's business 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

data is identical to Y's business data, and X's assertion time period [meets-1] Y's 
assertion time period.  

 
Semantics: a row X replaces a row Y if and only if X and Y both represent the same 

object, and X is a business-data identical assertion about what Y is like during the 
effective time period specified by Y.  

 
Comments:  

• See also: withdraw, supercede. 
• A row X replaces a row Y if and only if X says the same thing about what the 

object Y represents is like, during all or part of the effective time period specified 
by Y.  

• If a superceding version was also created as part of the temporal update 
transaction which created a replacement version, then this replacement version 
will [meet] that superceding version in effective time. 

• A temporal update transaction whose effective time period [intersects] that of a 
target version, but does not [equal] it, requires the AVF to withdraw the target 
version and then to split that target version into one version that does match the 
transaction, and one (or two) versions that do not. This is done with the fCUT 
function. The resulting version or versions that do not match the transaction are 
replacements, with identical business data. The one version that does match the 
transaction is updated with the new business data, and supercedes the 
corresponding effective timespan of the withdrawn version.  

 
Components: version, assertion, effective time, withdraw, supercede, temporal. 
 

represent 
Mechanics: a managed object represents an object in a series of one or more clock ticks if 

and only if those clock ticks are all included within the time period of that 
managed object. 

 
Comments:  

• See also occupy. 
 
Components: managed object, clock tick, object, time period.  
 

re-present 
Description we use the hyphenated form "re-present" advisedly. We do mean that we will 

show how to represent those internalized datasets as queryable objects, in the 
ordinary sense of the word "represent". But we also wish to emphasize that we are 
re-presenting, i.e. presenting again, things whose presence we have removed.2 

                                                 
2  We also wish to avoid confusion with our technical term represent, in which business data, we 

say, is represented in an effective time clock tick within an assertion time clock tick just in case 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Those things are the external pipeline datasets which, in Chapter 12, we showed 
how to internalize within the production tables which are their destinations or 
points of origin. (From Chapter 13.) 

 

retroactive delete 
Mechanics: a temporal delete transaction that specifies an effective begin date that is 

earlier than Now(). 
 
Semantics: a temporal delete transaction that removes the representation of an object 

from one or more clock ticks in past effective time. 
 
Comments: 

• In a conventional table, the only mistake in data that can be corrected is a mistake 
in data values, and the correction is done "destructively", by overwriting the old 
data. 

• But in an asserted version table, there are two other mistakes in data. One is to 
mistakenly claim that an object was represented during a past effective time 
period. The other is to mistakenly claim that an object was not represented during 
a past effective time period. A retroactive delete transaction is the means by 
which the former mistake is corrected. A retroactive insert transaction is the 
means by which the latter mistake is corrected. 

 
Components: clock tick, effective begin date, Now(), object, represent, past version, 

temporal transaction.  
 

retroactive insert 
Mechanics: a temporal insert transaction that specifies an effective begin date that is 

earlier than Now(). 
 
Semantics: a temporal insert transaction that adds the representation of an object to one or 

more clock ticks in past effective time. 
 
Comments: 

• See retroactive delete. 
 
Components: clock tick, effective begin date, Now(), object, represent, past version, 

temporal transaction. 
 

                                                                                                                                                 
that business data exists on an asserted version row whose assertion and effective time periods 
contain those clock tick pairs. 

  



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

retroactive transaction 
Mechanics: a temporal transaction that specifies an effective begin date that is earlier 

than Now().  
 
Semantics: a temporal transaction which alters the effective-time past. 
 
Comments:  

• See proactive transaction. 
 
Components: temporal transaction, effective begin date. 
 

retroactive update 
Mechanics: a temporal update transaction that specifies an effective begin date that is 

earlier than Now(). 
 
Semantics: a temporal update transaction that changes the business data representing an 

object in one or more clock ticks in past effective time. 
 
Components: business data, clock tick, effective time, object, represent, temporal 

transaction.  
 

retrograde movement 
Mechanics: changing the assertion begin date on a deferred assertion to an earlier date. 
 
Semantics: the movement of a deferred assertion from far future to near future assertion 

time. 
 
Components: assertion begin date, deferred assertion, far future assertion time, near 

future assertion time. 
 

row create date 
Mechanics: the date on which a row in an asserted version table is physically inserted 

into that table. 
 
Comments: 

• The means by which a physical logfile can be re-presented as a queryable object. 
 

row-level homonym 
Mechanics: a row whose business key identifies two or more different objects. 
 
Semantics: a row which represents two or more different objects. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Comments: 
• A row-level homonym is eliminated by replacing it with multiple rows, one for 

each object represented by the row. For example, a row in a Client table which 
has been updated with data representing two or more different clients, is a 
homonym.  

• See also: de-dupped, dirty data, row-level synonym. 
 
Components: business key, object. 
 

row-level synonym 
Mechanics: two or more rows which cannot be distinguished by means of their business 

keys. 
 
Semantics: two or more rows which represent the same object or, in a temporal context, 

represent the same object in at least one clock tick. 
 
Comments:  

• Row-level synonyms are eliminated by replacing them with one row that 
represents the one object that each of the synonyms references.. For example, 
multiple rows in a Client table which are discovered to represent the same client, 
are synonyms. 

• See also: de-dupped, dirty data, row-level homonym. 
 
Components: business key, clock tick, object. 
 

seamless access 
Description: the ability, in a query, to assemble result sets containing rows which exist in 

past, present or future time, in either or both of the two temporal dimensions, 
from the same set of tables that would be specified if the query were to retrieve 
current data only. 

 

seamless access, performance aspect 
Description: query performance against asserted version tables whose rows represent 

both non-current and current states of persistent objects must be nearly as good as 
query performance against non-temporal tables with an equivalent number of 
rows. 

 
Comments: 

• Queries which return temporal data, or a mix of temporal and current data, must 
return equivalent-sized results in an equivalent amount of elapsed time. Chapter 
15 explains how we believe this is possible. 

• Differences in maintenance performance will be greater than differences in query 
performance because one logical unit of work – the insertion, update or deletion 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

of business data about one object – will affect only one row in a conventional 
table, but one update or deletion to an asserted version table will usually affect 
several rows. 

 

seamless access, usability aspect 
Description: access to both current and non-current states of persistent objects which is 

just as easy for the data consumer to obtain as is access to only current states. 
 
Comments: 

• Temporal data must be available on-line, just as current data is. Transactions to 
maintain temporal data must be as easy to write as are transactions to maintain 
current data. Queries to retrieve temporal data, or a combination of temporal and 
current data, must be as easy to write as are queries to retrieve current data only. 
(From Chapter 1.) 

 

semantic logfile 
Semantics: the set of all past assertions and empty assertions in an asserted version table. 
 
Comments: 

• See physical logfile. 
• The contents of a physical logfile of a particular table, as of point in time X, are 

all those rows physically present in the table as of that point in time. The contents 
of a semantic logfile of that table, as of that point in time, are all those rows 
asserted on or prior to that point in time. The difference is the set of all assertions 
which are deferred assertions as of that point in time. 

 
Components: asserted version table, assertion, empty assertion. 
 

shared assertion time 
Mechanics: the shared assertion time of two or more versions are all those assertion time 

clock ticks included in both their assertion time periods. 
 
Semantics: the shared assertion time of two or more versions is the assertion time period 

within which they are commensurable.  
 
Components: assertion time, assertion time period, clock tick, (in)commensurable, 

version. 
 

state 
Semantics: the set of values in the business data columns of a row in an asserted version 

table which describes the properties and/or relationships which the object 
represented by that row has at a point in time or over a period of time.  



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

 
Components: asserted version table, business data, object, point in time, represent, time 

period. 
 

statement 
Mechanics: a currently asserted row in an asserted version table. 
 
Semantics: what is asserted, during a specified period of assertion time, is true of a 

referenced object during a specified period of effective time. 
 
Comments:  

• So in Asserted Versioning, a row in past assertion time is a record of a statement 
we once made, and a row in future assertion time is a record of a statement that 
we may make at some point in the future. Neither are statements. 

 
Components: asserted version table, assertion, assertion time period, currently asserted, 

effective time period, object, referent. 
 

successor 
Mechanics: a row in an asserted version table that supercedes all or part of another row. 
 

supercede 
Mechanics: a row X supercedes a row Y if and only if X and Y both represent the same 

object, X's effective time period [intersects] Y's effective time period, X's 
business data is not identical to Y's business data, and X's assertion time period 
[meets-1] Y's assertion time period.  

 
Semantics: a row X supercedes a row Y if and only if X and Y both represent the same 

object, and X is a business-data different assertion about what Y is like during all 
of part of the effective time period specified by Y. 

 
Comments: 

• See also: withdraw, replace. 
• A row X supercedes a row Y if and only if X says something new about what the 

object Y represents is like, during all or part of the effective time period specified 
by Y. 

• If a replacement version was also created as part of the temporal update 
transaction which created this superceding version, then this superceding version 
will [meet-1] that replacement version in effective time. 

 
Components: Allen relationship [intersect], Allen relationship [meets-1], assertion time 

period, business data, effective time period, object, represent. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

tabular data 
Mechanics: a collection of data structured as rows and columns. 
 
Semantics: a collection of data in which the collection itself represents a type of object, 

and whose contents represent one or more properties and/or relationships of one 
or more instances of that type. 

 
Comments:  

• Besides DBMS tables, files and their records are tabular data, as are the rows and 
columns in spreadsheets. 

 
Components: instance, object, type. 
 

target episode 
Mechanics: an episode that a temporal transaction will create, delete or modify. 
 
Comments:  

• There can be more than one target episode for a temporal update or delete. A 
temporal insert can insert only one episode. 

 
Components: episode, temporal transaction. 
 

target row 
Mechanics: a row in an asserted version table that a temporal transaction will create, 

delete or modify. 
 
Comments: 

• There can be more than one target row for a temporal update or delete. A 
temporal insert can insert only one row.  

 
Components: asserted version table, temporal transaction. 
 

target span 
Mechanics: the effective time period specified on a temporal transaction. 
 
Semantics: the time period into which a temporal insert transaction will place a 

representation of an object, within which a temporal update transaction will 
modify existing representations of an object, or from which a temporal delete 
transaction will remove the representation of an object. 

 
Components: effective time period, object, represent, time period, temporal delete 

transaction,  temporal insert transaction, temporal transaction, temporal update 
transaction.  



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

 

target table 
Mechanics: the table specified on a temporal transaction. 
 
Comments:  

• Temporal transactions have one and only one target table, even though temporal 
delete transactions can modify multiple tables. 

 
Components: temporal transaction. 
 

taxonomy 
Mechanics: an acyclic hierarchy, in which each child node is a KIND-OF its parent node, 

and in which the collection of child nodes under a common parent are jointly 
exhaustive and mutually exclusive. (From Chapter 2.) 

 
Semantics: a partitioned semantic hierarchy. 
 
Comments: 

• We leave KIND-OF as formally undefined, i.e. as part of our controlled 
vocabulary of primitive terms. When X is a KIND-OF Y, it follows that every 
instance of X is also an instance of Y, and that this is so because of what "X" and 
"Y" mean. 

 
Components: N/A. 
 

TEI 
See temporal entity integrity. 

 

temporal container 
Description: a spatial metaphor for the relationship of data to a time period, or for the 

relationship of effective time to assertion time. 
 

temporal data 
Semantics: data about the past, present and future states of objects, and/or about our past, 

present and future assertions that what that data says is true. 
 
Comments:  

• See explicitly temporal data, implicitly temporal data. 
 
Components: assertion, object, state. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

temporal data management taxonomy 
Description: a taxonomy of methods for managing temporal data, developed by the 

authors and presented in From Chapter 2. 
 

temporal data management taxonomy, (bi-temporal dat a) 
Description: any method of managing state temporal data in two temporal dimensions.  
 
Components: temporal data management taxonomy (state temporal data), temporal 

dimension. 
 

temporal data management taxonomy, (event temporal data) 
Description: any method of managing queryable temporal data that keeps track of 

changes to an object by recording the initial state of an object, and then by 
keeping a history of the events in which the object changed. (From Chapter 2.) 

 
Comments:  

• An event, once completed, cannot change. If data describing an event needs to be 
altered, it is because the data is incorrect, not because the event changed. 

 
Components: event, object, state, temporal data management taxonomy (queryable 

temporal data), temporal dimension. 
 

temporal data management taxonomy, (queryable tempo ral data) 
Mechanics: any method of managing temporal data that does not require manipulation of 

the data before it can be queried. (From Chapter 2) 
 
Components: temporal data. 
 

temporal data management taxonomy, (reconstructable  temporal 
data) 
Description: any method of managing temporal data that requires manipulation of the 

data before it can be queried. (From Chapter 2.) 
 
Components: temporal data. 
 

temporal data management taxonomy, (state temporal data) 
Description: any method of managing queryable temporal data that keeps track of the 

states of things as they change over time. 
 
Comments: 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

• As an object changes from one state to the next, we store the before-image of the 
current state, and update a copy of that state, not the original. The update becomes 
the new current state of the object. 

• When managing time using state data, what we record are not transactions, but 
rather the results of transactions, the rows resulting from inserts and (logical) 
deletes, and the rows representing both a before- and an after-image of every 
update. (From Chapter 2.) 

 
Components: state, temporal data management taxonomy (queryable temporal data). 
 

temporal data management taxonomy, (temporal data b est practices) 
Description: as described in Chapter 4, best practices in managing temporal data concern 

themselves with versioning, i.e. with keeping track of the changes to objects of 
interest by recording the states which those objects pass through as they change. 

 
Components: object, state, temporal data, versioning. 
 

temporal data management taxonomy, (temporal data m anagement) 
Description: any method of managing temporal data, at the table and row level, by means 

of explicit temporal schemas and constraints on the instances of those schemas. 
 
Comments:  

• Thus, for example, data warehouses and data marts are not part of this taxonomy 
because they are methods of managing temporal data at the database level. 

 
Components: temporal data. 
 

temporal data management taxonomy, (the alternative  temporal 
model) 
Description: a method of managing uni-temporal versioned tables at the column as well 

as at the row level, using transformations not specifiable with current SQL, that 
are based on various composition and decomposition operations defined in other 
publications by Dr. Nikos Lorentzos. 

 
Comments:  

• The temporal model described by C. J. Date, Hugh Darwen and Nikos Lorentzos 
in their book Temporal Data and the Relational Model. (Morgan-Kaufmann, 
2002). 

 
Components: uni-temporal, versioned table. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

temporal data management taxonomy, (the Asserted Ve rsioning 
temporal model) 
Description: a method of managing bi-temporal data, using transformations specifiable 

with current SQL, that manages each row in a temporal table as the assertion of a 
version of an episode of an object. 

 
Comments:  

• The temporal model described in this book. 
• Distinguished from the alternative temporal model in particular (i) in all the ways 

it is distinguished from the standard temporal model, and also (ii) by its 
recognition and treatment of assertion tables and bi-temporal tables and (iii) its 
decision to not manage temporal data at the column level. 

• Distinguished from the standard temporal model in particular by providing design 
and maintenance encapsulation, managing data located in future assertion time, its 
reliance on episodes as managed objects, and its internalization of adjunct 
datasets. 

 
Components: assertion, episode, object, temporal data management taxonomy (bi-

temporal data), temporal table, version. 
 

temporal data management taxonomy, (the standard te mporal model) 
Description: a method of managing bi-temporal data, using transformations specifiable 

with SQL available in 2000, that manages each row in a temporal table as a row 
in a conventional table which has been assigned a transaction time period, a valid 
time period, or both.  

 
Comments: 

• The temporal model described by Dr. Rick Snodgrass in his book Developing 
Time-Oriented Database Applications in SQL (Morgan-Kaufmann, 2000). 

 
Components: conventional table, temporal data management taxonomy (bi-temporal 

data), temporal table, transaction time, valid time. 
 

temporal data management taxonomy, (uni-temporal da ta) 
Description: any method of managing state temporal data in a single temporal dimension.  
 
Comments: 

• Thus versioning, in any of its forms, is a method of managing uni-temporal data. 
 
Components: temporal data management taxonomy (state temporal data), temporal 

dimension. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

temporal database 
Mechanics: a database that contains at least one table whose rows include one or more 

columns representing an assertion and/or effective time period. 
 
Semantics: a database at least one of whose tables is explicitly temporal. 
 
Components: assertion time period, effective time period. 
 

temporal date 
Mechanics: a date which is either a begin date or an end date. 
 
Semantics: a date which delimits a bi-temporal time period. 
 
Components: begin date, end date, temporal, time period. 
 

temporal default values 
Mechanics: the values for the assertion time period and effective time period which the 

AVF assigns to a temporal transaction unless those values are specified on the 
transaction itself. 

 
Comments: 

• Those values are Now() for the assertion and effective begin dates, and 9999 for 
the assertion and effective end dates. 

 
Components: assertion time period, AVF, effective time period, temporal transaction. 
 

temporal delete cascade 
Mechanics: a temporal delete transaction which removes all dependent child data from 

the transaction timespan specified on the temporal delete transaction. 
 
Semantics: 
 
Comments:  

• a temporal delete cascade will attempt to remove both the parent object, and all its 
dependent children, from the clock ticks specified in the transaction. (From 
Chapter 11.) 

 
Components: temporal delete transaction, transaction timespan. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

temporal delete transaction 
Mechanics: a temporal transaction against an asserted version table which removes 

business data representing an object from one or more contiguous or non-
contiguous effective-time clock ticks. 

 
Comments: 

• A temporal delete is like a temporal update except that it specifies that every 
version or part of a version of the designated object that falls, wholly or partially, 
within that target span will be, in current assertion time, removed from that target 
effective timespan. (From Chapter 9.) 

• A temporal delete withdraws its target object from one or more effective time 
clock ticks. In the process, it may {erase} an entire episode from current assertion 
time, or {split} an episode or a version in two, or {shorten} an episode or a 
version either forwards or backwards, or do several of these things to one or more 
episodes and/or versions with one and the same transaction. 

 
Components: asserted version table, business data, effective time, object, represent, 

temporal transaction. 
 

temporal dimension 
Semantics: a type of time within which points in time and/or periods of time are ordered. 
 
Components: type, point in time, time period. 
 

temporal entity integrity 
Mechanics: (i) for episodes, the constraint that no two episodes of the same object, in the 

same period of assertion time, either [meet] or [intersect]; (ii) for versions within 
an episode, the constraint that each effective-time adjacent pair of versions [meet] 
but do not [intersect].  

 
Semantics: the constraint that, in any clock tick of assertion time, no clock tick of 

effective time is occupied by more than one representation of an object. 
 
Comments:  

• One of the two constraints by means of which Asserted Versioning expresses the 
semantics of bi-temporal data. 

 
Components: Allen relationship [meet], Allen relationship [intersect], assertion time, 

episode, object, temporally adjacent, version. 
 

temporal extent 
Semantics: the number of clock ticks in a time period. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Components: clock tick, time period. 
 

temporal extent state transformation 
Mechanics: a transformation to an asserted version table in which, within a given period 

of assertion time, the number of effective-time clock ticks which a given episode 
occupies is increased or decreased. 

 
Semantics: a transformation altering the temporal extent of an episode's effective time 

period, within a given period of assertion time. 
 
Comments: 

• A temporal extent transformation alters the total number of effective-time clock 
ticks in which a given object is represented. But these transformations act on 
episodes, not directly on objects. 

• In the definitions of the temporal extent state transformations, the phrase "in a 
given period of assertion time" will be present implicitly. 

 
Components: asserted version table, assertion time, clock tick, effective time, episode, 

occupied. 
 

temporal extent state transformation taxonomy 
Description: a taxonomy of additions to or deletions from the set of clock ticks which 

contain a representation of an object in an asserted version table, developed by the 
authors and presented in From Chapter 9. 

 

temporal extent state transformation taxonomy, {cre ate} 
Mechanics: the temporal extent state transformation that adds the representation of an 

object to an effective time period that is either [before] or [before-1] the effective 
time period of any episode of that object already present in the table. 

 
Semantics: the temporal extent state transformation that adds a new episode to an 

asserted version table. 
 
Components: asserted version table, effective time, episode, object, represent. 
 

temporal extent state transformation taxonomy, {era se}. 
Mechanics: the temporal extent state transformation that, in a given period of assertion 

time, removes the representation of an object from an effective time period that is 
either [before] or [before-1] all other representations of that same object. 

 
Semantics: the temporal extent state transformation that withdraws an entire episode from 

current assertion time. 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

 
Components: Allen relationship taxonomy [before], Allen relationship taxonomy [before-

1], assertion time, effective time, object, represent. 
 

temporal extent state transformation taxonomy, {len gthen 
backwards} 
Mechanics: the temporal extent state transformation that adds the representation of an 

object to an effective time period that [meets] the effective time period of an 
episode of that object already present in the table.  

 
Semantics: the temporal extent state transformation that expands the effective time period 

of an episode into a contiguous, earlier time period. 
 
Components: Allen relationship [meets], effective time period, episode, object, 

representation. 
 

temporal extent state transformation taxonomy, {len gthen forwards} 
Mechanics: the temporal extent state transformation that adds the representation of an 

object to an effective time period that [meets-1] the effective time period of an 
episode of that object already present in the table.  

 
Semantics: the temporal extent state transformation that expands the effective time period 

of an episode into a contiguous, later time period. 
 
Components: Allen relationship [meets-1], effective time period, episode, object, 

representation. 
 

temporal extent state transformation taxonomy, {len gthen } 
Mechanics: the temporal extent state transformation that increases the number of clock 

ticks within the effective time period of an episode.  
 
Semantics: the temporal extent state transformation that enlarges the effective time period 

of an episode. 
 
Components: clock tick, effective time period, episode, object. 
 

temporal extent state transformation taxonomy, {mer ge} 
Mechanics: the temporal extent state transformation that adds the representation of an 

object to an effective time period that [meets-1] the effective time period of an 
earlier episode of that object, and that also [meets] the effective time period of a 
later episode of that object. 

 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Semantics: the temporal extent state transformation that transforms two adjacent episodes 
of the same object into one episode. 

  
Components: effective time period, episode, Allen relationship [meets], Allen 

relationship [meets-1], object, representation, temporally adjacent.  
 

temporal extent state transformation taxonomy, {mod ify } 
Mechanics: those temporal extent state transformations that increase or decrease the 

number of clock ticks occupied by an object, but that neither increase nor 
decrease the number of episodes that represent that object. 

 
Semantics: those temporal extent state transformations that add or remove clock ticks 

from one or more episodes. 
 
Components: clock tick, episode, object, represent. 
 

temporal extent state transformation taxonomy, {sho rten backwards} 
Mechanics: the temporal extent state transformation that removes the representation of an 

object from one or more contiguous clock ticks that were the latest clock ticks of 
an episode of that object.  

 
Semantics: the temporal extent state transformation that removes the effective time 

period of an episode from a later time period. 
 
Comments: 
 
Components: clock tick, contiguous, effective time, episode, object, representation. 
 

temporal extent state transformation taxonomy, {sho rten forwards} 
Mechanics: the temporal extent state transformation that removes the representation of an 

object from one or more contiguous clock ticks that were the earliest clock ticks 
of an episode of that object.  

 
Semantics: the temporal extent state transformation that removes the effective time 

period of an episode from an earlier time period. 
 
Comments: 
 
Components: clock tick, effective time, episode, object, representation. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

temporal extent state transformation taxonomy, {sho rten } 
Mechanics: the temporal extent state transformation that reduces the number of clock 

ticks within the effective time period of an episode of that object.  
 
Semantics: the temporal extent state transformation that reduces the effective time period 

of an episode. 
 
Components: clock tick, effective time period, episode, object. 
 

temporal extent state transformation taxonomy, {spl it} 
Mechanics: the temporal extent state transformation that removes the representation of an 

object from one or more contiguous clock ticks that were neither the earliest nor 
the latest clock ticks of an episode of that object already present in the table.  

 
Semantics: the temporal extent state transformation that transforms one episode into two 

adjacent episodes of the same object. 
 
Components: clock tick, contiguous, episode, object, representation, temporally adjacent.  
 

temporal foreign key 
Mechanics: a non-primary key column of an asserted version table which contains the 

unique identifier of an object on which the object represented by its own row in 
an asserted version table is existence dependent. 

 
Semantics: a column which designates an object on which the object represented by the 

row which contains it is existence dependent. 
 
Comments: 

• At the schema level, a TFK points from one table to a table it is dependent on. But 
at the row level, it points from one row, which is a version, to a group of one or 
more rows which make up an episode of the object whose oid matches the oid 
value in that temporal foreign key. 

• At the instance level, a TFK guarantees that there is an episode of the designated 
object in the referenced table, and that the effective time period of that episode in 
the referenced table includes, ([fills-1]) the effective time period of the version 
which contains the referring TFK. (From Chapter 6.) 

• Temporal foreign keys, like conventional foreign keys, are the managed object 
construct which represents the dependency of a child object on a parent object. 

 
Components: asserted version table, existence dependency, object, object identifier, 

represent.  
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

temporal gap 
Mechanics: the existence of at least one unoccupied clock tick between two time periods 

for the same object. 
 
Components: clock tick, object, occupy, time period. 
 

temporal gap versioning 
Mechanics: a form of versioning similar to logical delete versioning, but in which both a 

version begin date and a version end date are used to delimit the time period of 
the version.  

 
Semantics: a form of versioning in which versions of the same object may or may not be 

contiguous, and in which no version is physically deleted. 
 
Comments:  

• Logical delete versioning is not part of Asserted Versioning. See Chapter 4. 
• See also: basic versioning, logical delete versioning, effective time versioning. 

 
Components: contiguous, logical delete versioning, object, time period, version, version 

begin date, version end date. 
 

temporal insert 
Mechanics: a temporal transaction against an asserted version table which creates a 

single-row episode of the object specified in the transaction.   
 
Semantics: a temporal transaction against an asserted version table which places business 

data representing an object into an effective time period that is not contiguous 
with any other clock ticks in which the same object is represented. 

 
Comments: 

• A temporal inserts adds a representation of its specified object to a series of one 
or more contiguous effective time clock ticks. In the process, it may {create} an 
entire single-episode version, or {merge} two adjacent versions (thus merging 
their two episodes), or {lengthen} a version either forwards or backwards, or do 
several of these things with one and the same transaction. 

 
Components: asserted version table, business data, clock tick, contiguous, effective time 

period, episode, object, represent, temporal transaction, temporally adjacent.  
 

temporal parameter 
Mechanics: one of the three asserted versioning dates that can be specified on a temporal 

transaction, those being the effective begin date, the effective end date and the 
assertion begin date. 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

 
Semantics: the means by which an assertion time period and an effective time period is 

defined on a temporal transaction. 
 
Components: assertion begin date, assertion time period, effective begin date, effective 

end date, temporal transaction. 
 

temporal primary key 
Mechanics: the unique identifier of a row in an asserted version table, made up of (i) an 

object identifier (oid), (ii) an effective begin date, and an assertion begin date. 
 
Semantics: the unique identifier of a row in a bi-temporal table, made up of (i) the unique 

identifier of a persistent object, (ii) a unique designation of an effective time 
period, and (iii) a unique designation of an assertion time period. 

 
Components: asserted version table, bi-temporal, effective begin date, effective time 

period, assertion begin date, assertion time period, object identifier, oid, persistent 
object.  

 

temporal referential integrity 
Mechanics: the constraint that for every asserted version row which contains a temporal 

foreign key, there is an episode of the object which that temporal foreign key 
references such that, within shared assertion time, the effective time period of that 
episode includes ([fills-1]) the effective time period of that asserted version row. 

 
Semantics: the constraint that, in any clock tick of assertion time, every clock tick that is 

occupied by a representation of a child object is also occupied by one 
representation of each of its parent objects. 

 
Comments: 

• A TRI relationship between a child managed object and a parent managed object 
is based on an existence dependency between the objects which those managed 
objects represent. (From Chapter 11.) 

 
Components: Allen relationship [fill-1], asserted version table, assertion time, child 

object, clock tick, effective time period, episode, include, object, occupy, parent 
object, reference, shared assertion time, temporal foreign key. 

 

temporal tag 
Description: a metaphor for the association of a row of data with a time period. The time 

period is a temporal tag applied to the row. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

temporal transaction 
Mechanics: an insert, update or delete transaction whose target is an asserted version 

table. 
 
Semantics: a insertion, update or deletion of a temporally delimited assertion of a 

statement describing an object as it exists during a specified period of effective 
time.  

 
Components: asserted version table, assertion, effective time period, object, statement, 

target table. 
 

temporal update 
Mechanics: a temporal transaction against an asserted version table which modifies 

business data representing an object in one or more contiguous or non-contiguous 
effective-time clock ticks.  

 
Semantics: a temporal transaction against an asserted version table which changes one or 

more business data items describing that object in one or more clock ticks 
included in the transaction's specified period of effective time.  

 
Comments: 

• Note that a temporal update will change the business data for an object in 
occupied clock ticks, and will ignore unoccupied clock ticks. Thus the clock ticks 
that a temporal update affects are not necessarily contiguous clock ticks. And 
consequently, to be valid, it is not necessary that all clock ticks in the effective-
time range of a temporal update be occupied by the specified object. It is only 
necessary that at least one of them be occupied. 

 
Components: asserted version table, business data, clock tick, contiguous, effective time 

period, object, represent, temporal transaction. 
 

temporalize 
Mechanics: to temporalize a managed object is to associate an explicit assertion time 

period and/or an explicit effective time period with it. 
 
Components: assertion time period, effective time period, managed object. 
 

temporalized extension of the Closed World Assumpti on  
Mechanics: the constraint that a temporal transaction cannot insert data into past assertion 

time, update data in past assertion time, or delete data from past assertion time. 
 
Semantics: the assumption that if a statement was not represented in the database at time 

T1, then at time T1 we did not make that statement. 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

 
Comments: 

• Note, by contrast, that a temporal transaction can insert data into past effective 
time, update data in past effective time, and delete data from past effective time. 

• In chapter 12, we explained the reason that we can modify the statement content 
of past effective time but not of past assertion time. We said: ". . . . . a belief is 
expressed by the presence of a row in a table. No row, no belief. So if we write a 
transaction today that creates a row stating that we believed something yesterday, 
we are creating a row that states that we believed something at a time when there 
was no row to represent that belief. . . . . . (But) it would be a logical contradiction 
to state that we had such a belief at a point or period in time during which there 
was no row to represent that belief." 

 
Components: past assertion time, statement, temporal transaction. 
 

temporally adjacent 
Mechanics: two rows in an asserted version table are temporally adjacent if and only if 

they have the same object identifier and, in shared assertion time, have no other 
rows with the same object identifier whose effective time period is later than that 
of the earlier row and earlier than that of the later row. 

 
Semantics: temporally adjacent rows are rows representing the same object that, in shared 

assertion time, have no rows representing that same object between them in 
effective time. 

 
Comments: 

• If two rows in an asserted version table are adjacent, then either one is [before] 
the other, or one [meets] the other. This is because they would otherwise violate 
the temporal entity integrity constraint, which the AVF prevents. 

• If one row in an asserted version table is adjacent to and [before] the other, then 
they belong to different episodes. 

• If one row in an asserted version is adjacent to and [meets] the other, then they 
belong to the same episode. 

 
Components: asserted version table, effective time period, object, object identifier, 

represent, shared assertion time. 
 

temporally contiguous 
Mechanics: two time periods occupied by the same object are temporally contiguous just 

in case they share no clock ticks and there are no clock ticks between them. 
 
Components: clock tick, object, occupy, time period. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

temporally delimited 
Semantics: to be restricted to a time period. 
 
Comments: 

• A temporal transaction is temporally delimited to its effective time period within 
its assertion time period. 

• Note that these time periods can, and often do, remain current until further notice, 
i.e. that the can, and often do, end in 9999. 

 
Components: time period. 
 

terminate 
Mechanics: to withdraw the latest version of an episode and replace it with a version 

identical to it except that it has as an effective end date the date specified on a 
temporal delete transaction. 

 
Semantics: to set an effective end date for an episode. 
 
Comments:  

• The termination of an episode withdraws that episode from some but not all of the 
effective-time clock ticks which it occupies. If the episode is withdrawn from all 
of its effective-time clock ticks, it is {erased} from current assertion time. See 
temporal extent state transformation {erase}. 

• The termination of an episode should be thought of as the by-product of a 
temporal delete transaction, not as that transaction's semantic objective. The 
semantic objective of a temporal delete transaction is to remove the representation 
of an object from all clock ticks within the effective timespan specified on the 
transaction. If that effective timespan on the delete transaction includes the entire 
episode, then we say that the episode has been deleted, not that it has been 
terminated. 

 
Components: effective end date, episode, replace, temporal delete transaction, version, 

withdraw. 
 

TFK 
See temporal foreign key. 
 

thing  
Semantics: things are what exist through time, and can change over time. (From Chapter 

2.) 
 
Comments: 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

• See object, event. 
 

time period  
Mechanics: a continuous length of either effective or assertion time, with a known begin 

date.  
 
Semantics: a series of one or more contiguous clock ticks in either effective or assertion 

time, whose initial clock tick has a known value. 
 
Comments: 

• If the end date of a time period is not known, 9999 is used as the end date. 
Because of its interpretation as a valid date by the DBMS, the effective semantics 
is "until further notice". 

 
Components: assertion time, begin date, contiguous, clock tick, effective time. 
 

timeslice 
Mechanics: an object as it exists during a specified closed effective time period. 
 
Semantics: a closed effective period of time of an object. 
 
Comments:  

• A timeslice of an object represented in an asserted version table does not have to 
align on episode or version boundaries. It is just a continuous period of time in the 
life history of an object (or in the projection of that life history into the future.  

 
Components: closed effective time, object. 
 

timespan 
Mechanics: the period of time specified on a temporal transaction. 
 
Semantics: 
 
Comments: 
 
Components: 
 

transaction 
Mechanics: (i) a row in a transaction table; or (ii) an insert, update or delete to a database. 
 
Semantics: (i) data which is the record of an event; or (ii) the transformation of database. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Comments:  
• The first sense designates a row of data that represents an event. For example, a 

customer purchase is an event, represented by a row in a sales table; the receipt of 
a shipment is an event, represented by a row in a receipts table. In this sense, 
transactions are what are collected in the fact tables of fact-dimension data marts.  

• The second sense designates any insert, update or delete applied to a database. For 
example, it is an insert transaction that creates a new customer record, an update 
transaction that changes a customer's name, and a delete transaction that removes 
a customer from the database. (From Chapter 2.) 

• (In any formalization of this Glossary, of course, this homonym would have to be 
resolved. In this book, we rely on context to do so.) 

 
Components: event. 
 

transaction begin date 
Mechanics: in the standard temporal model, the date a row is physically inserted into a 

table. 
 
Semantics: in the standard temporal model, the date which designates the start of the 

transaction time period of a row, using the closed-open convention. 
 
Comments: 

• Another one of the several homonyms of "transaction".  
 
Components: closed-open, temporal data management taxonomy {the standard temporal 

model}, transaction time period. 
 

transaction table 
Semantics: a table whose rows represent events. 
 
Comments: 

• Transaction tables record the events that change the states of objects and, in 
particular, the relationships among them. (From Chapter 1.) 

• Transaction tables are often used as the fact tables in fact-dimension data marts. 
• There can be only one version of an event, since events do not persist and change 

over time. Multiple rows for the same event can only be multiple assertions about 
that event, presumably a series of corrections to the data. 

 
Components: events. 
 

transaction time 
Description: "A database fact is stored in a database at some point in time, and after it is 

stored, it may be retrieved. The transaction time of a database fact is the time 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

when the fact is stored in the database. Transaction times are consistent with the 
serialization order of the transactions. Transaction time values cannot be after the 
current time. Also, as it is impossible to change the past, transaction times cannot 
be changed. Transaction times may be implemented using transaction commit 
times." From [Jensen, 1992]. 

 
Comments: 

• As defined by Jensen, the computer science term "transaction time" may be 
treated as co-extensive with our term "row creation time". But the two terms 
cannot be said to be synonymous because they are defined by means of two 
vocabularies between which semantic correlations have not been established. 
Also, while Jensen's definition, given here, indicates that transaction time is a 
point in time, Snodgrass' use of the term, in [Snodgrass, 2000] has it referring to a 
period of time, usually open-ended, but not necessarily so. In this second sense, 
the term is co-extensive with a proper subset of our term "assertion time period". 

 

transaction time period 
Mechanics: the assertion and effective time periods specified on a temporal transaction. 
 
Semantics: the set of assertion time and effective time clock ticks outside of which a 

temporal transaction will have no effect on the database. 
 
Comments: 

• In this entry, "transaction" refers to "temporal transaction", not to any of the other 
homonyms of "transaction". 

 
Components: assertion time period, clock tick, effective time period, temporal 

transaction. 
 

transaction timespan 
 See transaction time period. 
 

TRI 
See temporal referential integrity. 
 

TSQL2 
Description: a temporal extension to the SQL-92 language standard, by Dr. Rick 

Snodgrass and others, first published in March 1994 in the ACM SIGMOD 
Record. A final version was published the following September. 

 
Comments:  

• This standard has not been adopted by the SQL standards committee. 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

 

type 
Semantics: a kind of thing. 
 
Comments: 

• See instance. 
• In a database, tables represent types of things, and rows represent instances of 

those types.  
 
Components: thing. 
 

uni-temporal data 
Mechanics: data which has either an assertion time period or an effective time period, but 

not both. 
 
Semantics: data which has one and only one explicitly expressed time period. 
 
Comments:  

• We say "explicitly expressed" to emphasize that all data is bi-temporal. In a 
conventional table, in which no assertion and/or time period columns are 
included, each row is nonetheless bi-temporal. Each row is a current assertion 
about what the object it represents is currently like. As a description of its object, 
each row's assertion time period and effective time period is the single clock tick 
Now(). As a claim that its object exists, each row's assertion and effective time 
periods are co-extensive with the row's physical presence in its table. 

 
Components: assertion time period, effective time period, time period. 
 

uni-temporal table 
Mechanics: a uni-temporal assertion table or a uni-temporal version table. 
 
Semantics: a table with a single explicitly expressed temporal dimension. 
 
Comments: 

• Uni-temporal version tables are common in business databases; Chapter 4 
describes their major variants. But see update in place for a common misuse of 
this kind of table. 

• Uni-temporal assertion tables are single-table logfiles. They are usually described 
as the history table companions to conventional tables. However, history tables 
are often designed with a primary key which is the same as the primary key of the 
table whose changes they track, but with the addition of a low-order date (or 
timestamp) to that primary key. In general, history tables like this are not 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

semantically complete uni-temporal assertion tables, being unable, for example, to 
distinguish entries which represent a delete from those which represent an update. 

 
Components: assertion, uni-temporal, temporal dimension, version. 
 

unreliable business key 
Mechanics: a business key which cannot be used to match data on a temporal transaction 

to one or more rows in the target table for that transaction.  
 
Semantics: a business key which may represent more than one object. 
 
Comments: 

• The distinction between reliable and unreliable business keys can be seen at work 
in the description of the match logic for Asserted Versioning's temporal 
transactions, in From Chapter 9. 

 
Components: business key, object, represent, target table, temporal transaction. 
 

until further notice 
Mechanics: an assertion time period or an effective time period whose end date is 9999 

(the highest temporal value the DBMS can represent). 
 
Semantics: an assertion time period or an effective time period whose end date is 

unknown, but which is interpreted to be in the future. 
 
Comments:  

• In general, this term means "unknown but presumed valid". In a SQL Server 
asserted version table, a row is asserted until further notice if and only if its 
assertion end date is 12/31/9999, and is in effect until further notice if and only if 
its effective end date is 12/31/9999. 

• Mechanically, a time period with a begin date in the past, and that is presumed to 
be current until further notice, will be interpreted by the DBMS in that way 
because in any query, Now() will always be greater than that begin date and less 
than that end date.  

• Neither 12/31/9999, nor any other DBMS representation of 9999, is valid as an 
assertion begin date or effective begin date. 

• If 12/31/9999 (or any other DBMS representation of 9999 is used in a business 
data column, of course, it has whatever semantics the business chooses to give to 
it. 

 
Components: 9999, assertion time period, effective time period, end date. 
 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

update in place 
Mechanics: to update data on a row by overwriting it. 
 
Comments:  

• In a conventional table, all updates are updates in place, and therefore all updates 
destroy historical information. An update which reflects a change in the object 
represented by a row of data has the effect of replacing a current version with a 
new current version, thus destroying effective-time history. An update which 
reflects a correction to a mistake made in the data has the effect of replacing a 
current assertion with a new current assertion, thus destroying assertion-time 
history. 

• And so, in a uni-temporal table, either one or the other of those two types of 
updates must be done as an update in place, thus destroying one or the other of 
those two kinds of history, or else the two kinds of update are not distinguished 
and both result in the creation of a new row of data. But this second way of 
managing uni-temporal tables makes it impossible to distinguish true versions, i.e. 
rows which are part of the effective-time history of an object, from corrections to 
bad data. All too frequently, in business databases, this second way of managing 
uni-temporal tables is called versioning, and the rows in those tables are called 
versions. Interpreted in this way, these tables are themselves mistaken data, and 
provide incorrect information to their business consumers. 

 
Components: N/A. 
 

valid time 
Description: the computer science term "valid time" may be treated as co-extensive with 

our term "effective time".  
 
Comments:  

• "The valid time of a fact is the time when the fact is true in the modeled reality. A 
fact may have associated any number of events and intervals, with single events 
and intervals being important special cases." From [Jensen, 1992] 

 

version 
Mechanics: a row in an asserted version table statement which makes a statement about 

what the object it represents is like during a specified effective time period. 
 
Semantics: a row in a table which represents the state of an object during a specified 

period of time.  
 
Comments:  

• Every row in an asserted version table is either a past, present or future version 
representing an object. 

 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

Components: asserted version table, effective time period, object, represent, statement. 
 

version begin date 
Description: the date on which a row in a best practices version table begins. 
 
Comments: 

• This expression does not apply to a row in an asserted version table. A row in an 
asserted version table is a version, and the begin date associated with that row, as 
a version, is its effective begin date. The version begin date of a row in any other 
kind of version table may represent either the physical date on which the row was 
created, or a logical date on which the version becomes effective. 

 

version end date 
Description: the date on which a row in a best practices version table ends. 
 
Comments: 

• This expression does not apply to a row in an asserted version table. A row in an 
asserted version table is a version, and the begin date associated with that row, as 
a version, is its effective begin date. The version end date of a row in any other 
kind of version table may represent either the physical date on which a delete 
transaction was applied to the row, or a logical date on which the version ceased 
to be in effect. 

 

version split 
Mechanics: a process in which the representation of an object is removed from one or 

more effective-time clock ticks that [fill] the effective time period of a version. 
 
Semantics: a process in which one version is withdrawn, and replaced by two versions. 
 
Comments:  

• When a version is split, the earlier half becomes a new version which is located 
[before] the latter half. Because the two versions are not contiguous, the result of 
splitting a version is always to split an episode. See temporal extent state 
transformation {split}. 

• Although a version split always results in an episode split, the reverse is not the 
case.  

 
Components: clock tick, effective time, Allen relationship [fill], object, represent, 

version, withdraw. 
 

version table 
Mechanics: a uni-temporal table whose explicitly represented time is effective time.  



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

 
Semantics: a uni-temporal table each of whose rows is a current assertion about what its 

object was, is or will be like during the specified period of effective time. 
 
Comments: 

• To be semantically valid, a uni-temporal version table must correct errors in data 
by overwriting those errors. Frequently, businesses have uni-temporal tables 
which they think are version tables, but in which every update results in a new 
row in the table. But this means that the begin, or begin and end dates, of those 
rows are not true version dates. They are just dates of physical database activity. 
If the update reflected a change in the object being represented, then the version 
date or dates have the semantics of effective dates. But if the update reflected a 
correction to bad data, then the version date or dates have the semantics of 
assertion dates. By mixing both kinds of updates, the semantics are destroyed, and 
we don't know what any row in the table is really telling us. 

• An asserted version table is one kind of version table. IT best practices have given 
rise to many other kinds of version tables, which we grouped into four main types 
in From Chapter 4. What the standard temporal model calls a valid-time table is 
another kind of version table. 

 
Components: effective time, object, uni-temporal. 
 

version(ed) data 
Description: data that describes what its object is like during a stated period of time. 
 
Comments: 

• What kind of period of time is involved depends on the kind of version table. In 
many best practice implementations of versioned tables, unfortunately, effective 
time and assertion time are not distinguished. An update that reflects a change to 
the object represented in the table results in a new version, but an update that 
reflects a correction to erroneous data also results in a new version. And in both 
cases, the version begin date is simply the date the new row was physically 
created. Nearly all best practice support for versioned data is semantically 
incomplete. But when effective time changes are not clearly distinguished from 
error correction changes, those implementations are semantically flawed, and the 
data thus supported is semantically ambiguous. 

 

withdraw 
Mechanics: to set the assertion end date of a row in an asserted version table to Now(). 
 
Semantics: to move an asserted version row into past assertion time. 
  
Comments:  

• See also replace, supercede. 



 
Managing Time in Relational Databases: Glossary. 
© Tom Johnston and Randy Weis, 2010. 

• See also lock.  
• Non-deferred update and delete transactions sets the end date of versions they will 

then replace and/or supercede to Now() which, upon the conclusion of the 
temporal transaction, immediately becomes a past date. This is a "clearing the 
decks" transformation which removes the representation of the object affected by 
the transaction from current assertion time. 

• A temporal transaction cannot set a row's assertion end date to a past date 
because, if it did, it would create a contradiction. During the time period from that 
past date to the time the transaction took place, the database asserted that row. But 
after Now(), the record of that assertion is erased from the database. Just as we 
cannot retroactively begin an assertion, we cannot retroactively end one, either. 
This is another manifestation of the temporalized extension of the Closed World 
Assumption. 

• If a temporal transaction sets a row's assertion end date to a future date, it locks 
that row, making it a closed version. If that row is the effective-time last row in an 
episode, it makes that episode a closed episode. Only deferred transactions can set 
a row's assertion end date to a future date. 

• Thus, no temporal transaction can set a row's assertion end date to a past date. 
Deferred transactions set that date to a future date. Non-deferred transactions set 
that date to Now(), and then as soon as the transaction is complete, that row is in 
past assertion time. 

 
Components: 9999, assertion end date, asserted version table, past assertion time. 
 
 


